Dental caries is one of the most prevalent and costly biofilm-induced oral diseases that causes the deterioration of the mineralized tooth tissue.Traditional antimicro-bial agents like antibiotics and antimicrobial pep...Dental caries is one of the most prevalent and costly biofilm-induced oral diseases that causes the deterioration of the mineralized tooth tissue.Traditional antimicro-bial agents like antibiotics and antimicrobial peptides(AMPs)struggle to effectively eradicate bacteria in biofilms without eliciting resistance.Herein,we demonstrate the construction of FeOOH@Fe-Lysine@Au nanostructured AMPs(nAMPs)dis-tinguished by their AMP-like antibacterial activity and self-producing reactive oxygen species(ROS)capacity for caries treatment.On the one hand,FeOOH@Fe-Lysine@Au nAMPs can catalyze glucose oxidation to generate ROS within the cariogenic biofilm microenvironment,resulting in the disintegration of the extra-cellular polymeric substance matrix and the exposure of bacteria.On the other hand,FeOOH@Fe-Lysine@Au nAMPs can attach to bacterial surfaces via electrostatic attractions,proceeding to damage membranes,disrupt metabolic pathways,and inhibit protein synthesis through the aggregated lysine and the generated ROS.Based on this antibacterial mechanism,FeOOH@Fe-Lysine@Au nAMPs can effectively eradicate Streptococcus mutans and its associated biofilm,significantly impeding the progression of dental caries.Given the straightforward and cost-efficient prepa-ration of FeOOH@Fe-Lysine@Au nAMPs compared to AMPs that require specific sequences,and their minimal adverse impacts on gingival/palatal tissues,major organs,and oral/gut microbiomes,our research may promote the development of novel therapeutic agents in dental health maintenance.展开更多
基金Science and Technology Development Program of Jilin Province,Grant/Award Numbers:***202302001,20210203090SFScience and Technology Development Program of Changchun City,Grant/Award Number:23***13Special Project from Ministry of Science and Technology of China。
文摘Dental caries is one of the most prevalent and costly biofilm-induced oral diseases that causes the deterioration of the mineralized tooth tissue.Traditional antimicro-bial agents like antibiotics and antimicrobial peptides(AMPs)struggle to effectively eradicate bacteria in biofilms without eliciting resistance.Herein,we demonstrate the construction of FeOOH@Fe-Lysine@Au nanostructured AMPs(nAMPs)dis-tinguished by their AMP-like antibacterial activity and self-producing reactive oxygen species(ROS)capacity for caries treatment.On the one hand,FeOOH@Fe-Lysine@Au nAMPs can catalyze glucose oxidation to generate ROS within the cariogenic biofilm microenvironment,resulting in the disintegration of the extra-cellular polymeric substance matrix and the exposure of bacteria.On the other hand,FeOOH@Fe-Lysine@Au nAMPs can attach to bacterial surfaces via electrostatic attractions,proceeding to damage membranes,disrupt metabolic pathways,and inhibit protein synthesis through the aggregated lysine and the generated ROS.Based on this antibacterial mechanism,FeOOH@Fe-Lysine@Au nAMPs can effectively eradicate Streptococcus mutans and its associated biofilm,significantly impeding the progression of dental caries.Given the straightforward and cost-efficient prepa-ration of FeOOH@Fe-Lysine@Au nAMPs compared to AMPs that require specific sequences,and their minimal adverse impacts on gingival/palatal tissues,major organs,and oral/gut microbiomes,our research may promote the development of novel therapeutic agents in dental health maintenance.