期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
大模型时代的自然语言处理:挑战、机遇与发展 被引量:59
1
作者 车万翔 窦志成 +20 位作者 冯岩松 桂韬 韩先培 户保田 黄民烈 黄萱菁 刘康 刘挺 刘知远 秦兵 邱锡鹏 万小军 王宇轩 文继荣 严睿 张家俊 张民 张奇 赵军 赵鑫 赵妍妍 《中国科学:信息科学》 CSCD 北大核心 2023年第9期1645-1687,共43页
近期发布的ChatGPT和GPT-4等大型语言模型,不仅能高质量完成自然语言生成任务,生成流畅通顺,贴合人类需求的语言,而且具备以生成式框架完成各种开放域自然语言理解任务的能力.在少样本、零样本场景下,大模型可取得接近乃至达到传统监督... 近期发布的ChatGPT和GPT-4等大型语言模型,不仅能高质量完成自然语言生成任务,生成流畅通顺,贴合人类需求的语言,而且具备以生成式框架完成各种开放域自然语言理解任务的能力.在少样本、零样本场景下,大模型可取得接近乃至达到传统监督学习方法的性能,且具有较强的领域泛化性,从而对传统自然语言核心任务产生了巨大的冲击和影响.本文就大模型对自然语言处理的影响进行了详细的调研和分析,试图探究大模型对自然语言处理核心任务带来哪些挑战和机遇,探讨大模型将加强哪些自然语言处理共性问题的研究热度,展望大模型和自然语言处理技术的未来发展趋势和应用.分析结果表明,大模型时代的自然语言处理依然大有可为.我们不仅可以将大模型作为研究方法和手段,学习、借鉴大型语言模型的特点和优势,变革自然语言处理的主流研究范式,对分散独立的自然语言处理任务进行整合,进一步提升自然语言核心任务的能力;还可就可解释性、公平性、安全性、信息准确性等共性问题开展深入研究,促进大模型能力和服务质量的提升.未来,以大模型作为基座,拓展其感知、计算、推理、交互和控制能力,自然语言处理技术将进一步助力通用人工智能的发展,促进各行各业的生产力进步,更好地为人类社会服务. 展开更多
关键词 ChatGPT 对话式大模型 大型语言模型 自然语言处理 通用人工智能
原文传递
Combating with extremely noisy samples in weakly supervised slot filling for automatic diagnosis 被引量:1
2
作者 Xiaoming SHI wanxiang che 《Frontiers of Computer Science》 SCIE EI CSCD 2023年第5期67-73,共7页
Slot filling,to extract entities for specific types of information(slot),is a vitally important modular of dialogue systems for automatic diagnosis.Doctor responses can be regarded as the weak supervision of patient q... Slot filling,to extract entities for specific types of information(slot),is a vitally important modular of dialogue systems for automatic diagnosis.Doctor responses can be regarded as the weak supervision of patient queries.In this way,a large amount of weakly labeled data can be obtained from unlabeled diagnosis dialogue,alleviating the problem of costly and time-consuming data annotation.However,weakly labeled data suffers from extremely noisy samples.To alleviate the problem,we propose a simple and effective Co-WeakTeaching method.The method trains two slot filling models simultaneously.These two models learn from two different weakly labeled data,ensuring learning from two aspects.Then,one model utilizes selected weakly labeled data generated by the other,iteratively.The model,obtained by the Co-WeakTeaching on weakly labeled data,can be directly tested on testing data or sequentially fine-tuned on a small amount of human-annotated data.Experimental results on these two settings illustrate the effectiveness of the method with an increase of 8.03%and 14.74%in micro and macro f1 scores,respectively. 展开更多
关键词 dialogue system slot filling CO-TEACHING
原文传递
An Evaluation of Chinese Human-Computer Dialogue Technology
3
作者 Zixian Feng Caihai Zhu +4 位作者 Weinan Zhang Zhigang chen wanxiang che Minlie Huang Linlin Li 《Data Intelligence》 2021年第2期274-286,共13页
There is a growing interest in developing human-computer dialogue systems which is an important branch in the field of artificial intelligence(AI).However,the evaluation of large-scale Chinese human-computer dialogues... There is a growing interest in developing human-computer dialogue systems which is an important branch in the field of artificial intelligence(AI).However,the evaluation of large-scale Chinese human-computer dialogues is still a challenging task.To attract more attention to dialogue evaluation work,we held the fourth Evaluation of Chinese Human-Computer Dialogue Technology(ECDT).It consists of few-shot learning in spoken language understanding(SLU)(Task 1)and knowledge-driven multi-turn dialogue competition(Task 2),the data sets of which are provided by Harbin Institute of Technology and Tsinghua University.In this paper,we will introduce the evaluation tasks and data sets in detail.Meanwhile,we will also analyze the evaluation results and the existing problems in the evaluation. 展开更多
关键词 Chinese human-computer dialogue evaluation Evaluation data Few-shot learning Knowledge-driven multi-turn dialogue
原文传递
An Evaluation of Chinese Human-Computer Dialogue Technology
4
作者 Zhengyu Zhao Weinan Zhang +2 位作者 wanxiang che Zhigang chen Yibo Zhang 《Data Intelligence》 2019年第2期187-200,共14页
The human-computer dialogue has recently attracted extensive attention from both academia and industry as an important branch in the field of artificial intelligence(AI).However,there are few studies on the evaluation... The human-computer dialogue has recently attracted extensive attention from both academia and industry as an important branch in the field of artificial intelligence(AI).However,there are few studies on the evaluation of large-scale Chinese human-computer dialogue systems.In this paper,we introduce the Second Evaluation of Chinese Human-Computer Dialogue Technology,which focuses on the identification of a user’s intents and intelligent processing of intent words.The Evaluation consists of user intent classification(Task 1)and online testing of task-oriented dialogues(Task 2),the data sets of which are provided by iFLYTEK Corporation.The evaluation tasks and data sets are introduced in detail,and meanwhile,the evaluation results and the existing problems in the evaluation are discussed. 展开更多
关键词 Chinese human-computer dialogue evaluation Evaluation data User intent classification Task-oriented dialogue
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部