Massive hemorrhage may be detrimental to the patients,which necessitates the advent of new materials with high hemostatic efficiency and good biocompatibility.The objective of this research was to screen for the effec...Massive hemorrhage may be detrimental to the patients,which necessitates the advent of new materials with high hemostatic efficiency and good biocompatibility.The objective of this research was to screen for the effect of the different types of bio-elastomers as hemostatic dressings.3D loose nanofiber sponges were prepared;PU-TA/Gel showed promising potential.Polyurethane(PU)was synthesized and electrospun to afford porous sponges,which were crosslinked with glutaraldehyde(GA).FTIR and 1H-NMR evidenced the successful synthesis of PU.The prepared PU-TA/Gel sponge had the highest porosity and water absorption ratio.Besides,PU-TA/Gel sponges exhibited cytocompatibility,negligible hemolysis and the shortest clotting time.PU-TA/Gel sponge rapidly induced stable blood clots with shorter hemostasis time and less bleeding volume in a liver injury model in rats.Intriguingly,PU-TA/Gel sponges also induced good skin regeneration in a full-thickness excisional defect model as revealed by the histological analysis.These results showed that the PU-TA/Gel-based sponges may offer an alternative platform for hemostasis and wound healing.展开更多
基金supported by the Science and Technology Commission of Shanghai Municipality(19441902600,20S31900900,20DZ2254900)Sino German Science Foundation Research Exchange Center(M-0263)+3 种基金the crossdisciplinary project of Donghua University(101080241022)This project was also supported by Researchers Supporting Project Number(RSP2023R65)King Saud University,Riyadh,Saudi Arabia.M.S.is an International Research Fellow of the Japan Society for the Promotion of Science(Postdoctoral Fellowships for Research in Japan(Standard))The part of this research was also funded by Grant-in-Aid for JSPS Fellows(JP21F21353).
文摘Massive hemorrhage may be detrimental to the patients,which necessitates the advent of new materials with high hemostatic efficiency and good biocompatibility.The objective of this research was to screen for the effect of the different types of bio-elastomers as hemostatic dressings.3D loose nanofiber sponges were prepared;PU-TA/Gel showed promising potential.Polyurethane(PU)was synthesized and electrospun to afford porous sponges,which were crosslinked with glutaraldehyde(GA).FTIR and 1H-NMR evidenced the successful synthesis of PU.The prepared PU-TA/Gel sponge had the highest porosity and water absorption ratio.Besides,PU-TA/Gel sponges exhibited cytocompatibility,negligible hemolysis and the shortest clotting time.PU-TA/Gel sponge rapidly induced stable blood clots with shorter hemostasis time and less bleeding volume in a liver injury model in rats.Intriguingly,PU-TA/Gel sponges also induced good skin regeneration in a full-thickness excisional defect model as revealed by the histological analysis.These results showed that the PU-TA/Gel-based sponges may offer an alternative platform for hemostasis and wound healing.