期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Delicate chemical structure regulation of nonfullerene acceptor for efficient and large thickness organic solar cells
1
作者 Zhe Zhang wanying feng +9 位作者 Yunxin Zhang Shaohui Yuan Yuyang Bai Peiran Wang Zhaoyang Yao Chenxi Li Tainan Duan Xiangjian Wan Bin Kan Yongsheng Chen 《Science China Chemistry》 SCIE EI CAS CSCD 2024年第5期1596-1604,共9页
Inspired by the success of CH-series acceptors, a small-molecular acceptor, CH-Tz was reported by adopting a new conjugationextended electron-deficient unit([1,2,5]thiadiazolo[3,4-b]pyrazine) on the central core. Owin... Inspired by the success of CH-series acceptors, a small-molecular acceptor, CH-Tz was reported by adopting a new conjugationextended electron-deficient unit([1,2,5]thiadiazolo[3,4-b]pyrazine) on the central core. Owing to the enhanced inter-/intramolecular interactions, CH-Tz exhibited near-infrared absorption and an effective three-dimensional molecular packing network in its single crystal. When blended with polymer donor PM6, the binary device achieved a high power conversion efficiency(PCE) of 18.54%, with a notable short-circuit current density(J_(sc)) of 27.54 m A cm-2and an excellent fill factor(FF) over 80%,which can be partly ascribed to the balanced charge transport properties in the blend film. After employing D18-Cl as the third component, an enhanced PCE of 18.85% was achieved due to a more obvious fiber network. Impressively, the CH-Tz-based OSC devices show excellent thermal stability and thickness insensitivity. Record-breaking Jscof 28.92 m A cm-2was reached for PM6:D18-Cl:CH-Tz ternary device with a thickness of 560 nm. Besides, CH-Tz shows potential in fabricating multicomponent high-performance organic solar cells, where over 19% efficiency could be realized in the quaternary device. Our work advances the strong influence of electron-deficient central units on molecular photovoltaic properties and guides the design of acceptors for stable and large-thickness organic solar cells. 展开更多
关键词 organic solar cells non-fullerene acceptor central unit large thickness molecular packing
原文传递
P-doped all-small-molecule organic solar cells with power conversion efficiency of 17.73%
2
作者 wanying feng Kangqiao Ma +10 位作者 Guangkun Song Tianyin Shao Huazhe Liang Shudi Lu Yu Chen Guankui Long Chenxi Li Xiangjian Wan Zhaoyang Yao Bin Kan Yongsheng Chen 《Science China Chemistry》 SCIE EI CAS CSCD 2023年第8期2371-2379,共9页
All-small organic solar cells(ASM OSCs)inherit the advantages of the distinct merits of small molecules,such as well-defined structures and less batch-to-batch variation.In comparison with the rapid development of pol... All-small organic solar cells(ASM OSCs)inherit the advantages of the distinct merits of small molecules,such as well-defined structures and less batch-to-batch variation.In comparison with the rapid development of polymer-based OSCs,more efforts are needed to devote to improving the performance of ASM OSCs to close the performance gap between ASM and polymer-based OSCs.Herein,a well-known p-dopant named fluoro-7,7,8,8-tetracyano-p-quinodimethane(FTCNQ)was introduced to a highefficiency system of HD-1:BTP-e C9,and a high power conversion efficiency(PCE)of 17.15%was achieved due to the improved electrical properties as well as better morphology of the active layer,supported by the observed higher fill factor(FF)of 79.45%and suppressed non-radiative recombination loss.Furthermore,combining with the further morphology optimization from solvent additive of 1-iodonaphthalene(IN)in the blend film,the HD-1:BTP-e C9-based device with the synergistic effects of both FTCNQ and IN demonstrates a remarkable PCE of 17.73%(certified as 17.49%),representing the best result of binary ASM OSCs to date. 展开更多
关键词 organic solar cells all-small-molecule power conversion efficiency p-dopant
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部