期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Superconductivity and Charge Density Wave in Iodine-Doped CuIr_(2)Te_(4) 被引量:1
1
作者 Mebrouka Boubeche 于佳 +9 位作者 李楚善 王慧超 曾令勇 何溢懿 王晓鹏 苏婉珍 王猛 姚道新 王志俊 罗惠霞 《Chinese Physics Letters》 SCIE CAS CSCD 2021年第3期81-88,共8页
We report a systematic investigation on the evolution of the structural and physical properties,including the charge density wave(CDW) and superconductivity of the polycrystalline CuIr_(2)Te_(4-x)Ix for 0.0 ≤x≤ 1.0.... We report a systematic investigation on the evolution of the structural and physical properties,including the charge density wave(CDW) and superconductivity of the polycrystalline CuIr_(2)Te_(4-x)Ix for 0.0 ≤x≤ 1.0.Xray diffraction results indicate that both of a and c lattice parameters increase linearly when 0.0 ≤ x ≤ 1.0.The resistivity measurements indicate that the CDW is destabilized with slight x but reappears at x≥0.9 with very high TCDW.Meanwhile,the superconducting transition temperature Tc enhances as x increases and reaches a maximum value of around 2.95 K for the optimal composition CuIr_(2)Te_(1.9)I_(0.1) followed by a slight decrease with higher iodine doping content.The specific heat jump(ΔC/γTc) for the optimal composition CuIr_(2)Te_(3.9)I_(0.1) is approximately 1.46,which is close to the Bardeen-Cooper-Schrieffer value of 1.43,indicating that it is a bulk superconductor.The results of thermodynamic heat capacity measurements under different magnetic fields |Cp(T,H)],magnetization M(T,H) and magneto-transport ρ(T,H) measurements further suggest that CuIr_(2)Te_(4-x)Ix bulks are type-Ⅱ superconductors.Finally,an electronic phase diagram for this CuIr_(2)Te_(4-x)Ix system has been constructed.The present study provides a suitable material platform for further investigation of the interplay of the CDW and superconductivity. 展开更多
关键词 RESISTIVITY MAGNETIZATION DIAGRAM
下载PDF
BaTiO_(3)@Au nanoheterostructure suppresses triple-negative breast cancer by persistently disrupting mitochondrial energy metabolism
2
作者 Yanlin Feng Jianlin Wang +9 位作者 Xin Ning Aiyun Li Qing You wanzhen su Deping Wang Jianyun Shi Lan Zhou Fangfang Cao Xiaoyuan Chen Jimin Cao 《Nano Research》 SCIE EI CSCD 2023年第2期2775-2785,共11页
Abnormal metabolism has become a potential target for highly malignant and invasive triple-negative breast cancer(TNBC)due to its relatively low response to traditional therapeutics.The existing metabolic intervention... Abnormal metabolism has become a potential target for highly malignant and invasive triple-negative breast cancer(TNBC)due to its relatively low response to traditional therapeutics.The existing metabolic interventions demonstrated unsatisfactory therapeutic outcomes and potential systemic toxicity,resulting from the metabolic instability and limited targeting ability of inhibitors as well as complex tumor microenvironment.To address these limitations,here we developed a robust pyroelectric BaTiO_(3)@Au core–shell nanostructure(BTO@Au)to selectively and persistently block energy generation of tumor cells.Stimulated by near-infrared(NIR)laser,the Au shell could generate heat to activate the BaTiO_(3)core to produce reactive oxygen species(ROS)regardless of the constrained microenvironment,thus prominently inhibits mitochondrial oxidative phosphorylation(OXPHOS)and reduces ATP production to induce TNBC cell apoptosis.The therapeutic effects have been well demonstrated in vitro and in vivo,paving a new way for the development of metabolic interventions. 展开更多
关键词 pyroelectric nanoheterostructure reactive oxidative species(ROS) metabolic interventions mitochondrial oxidative phosphorylation(OXPHOS) triple-negative breast cancer(TNBC)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部