期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
一种应用于文本分类的段落向量正向激励方法
1
作者 钱亚冠 方科彬 +4 位作者 康明 顾钊铨 潘俊 王滨 wassim swaileh 《中文信息学报》 CSCD 北大核心 2023年第7期51-60,共10页
文本分类广泛应用于文档检索、网络搜索等领域,其中文本的向量化表示对于分类性能的提高具有重要的影响。在将变长文本表示成定长向量时,传统的段落向量化算法Doc2Vec忽视了该算法每轮训练的次数与段落长度高度相关的问题,以及长段落包... 文本分类广泛应用于文档检索、网络搜索等领域,其中文本的向量化表示对于分类性能的提高具有重要的影响。在将变长文本表示成定长向量时,传统的段落向量化算法Doc2Vec忽视了该算法每轮训练的次数与段落长度高度相关的问题,以及长段落包含短段落信息的情况,限制了分类模型准确率的进一步提升。针对该问题,该文提出一种应用于文本分类的基于段落向量正向激励的方法。首先,根据中位数划分长、短段落向量,然后在分类模型输入过程中提升长段落向量的权重,实现提高模型分类准确率的目的。在Stanford Sentiment Treebank、IMDB和Amazon Reviews三个数据集上的实验结果表明,通过选择适当的激励系数,采用段落向量正向激励的分类模型可以获得更高的分类准确率。 展开更多
关键词 正向激励 段落向量 文本分类
下载PDF
面向边缘智能的两阶段对抗知识迁移方法 被引量:4
2
作者 钱亚冠 马骏 +4 位作者 何念念 王滨 顾钊铨 凌祥 wassim swaileh 《软件学报》 EI CSCD 北大核心 2022年第12期4504-4516,共13页
对抗样本的出现,对深度学习的鲁棒性提出了挑战.随着边缘智能的兴起,如何在计算资源有限的边缘设备上部署鲁棒的精简深度学习模型,是一个有待解决的问题.由于精简模型无法通过常规的对抗训练获得良好的鲁棒性,提出两阶段对抗知识迁移的... 对抗样本的出现,对深度学习的鲁棒性提出了挑战.随着边缘智能的兴起,如何在计算资源有限的边缘设备上部署鲁棒的精简深度学习模型,是一个有待解决的问题.由于精简模型无法通过常规的对抗训练获得良好的鲁棒性,提出两阶段对抗知识迁移的方法,先将对抗知识从数据向模型迁移,然后将复杂模型获得的对抗知识向精简模型迁移.对抗知识以对抗样本的数据形式蕴含,或以模型决策边界的形式蕴含.具体而言,利用云平台上的GPU集群对复杂模型进行对抗训练,实现对抗知识从数据向模型迁移;利用改进的蒸馏技术将对抗知识进一步从复杂模型向精简模型的迁移,最后提升边缘设备上精简模型的鲁棒性.在MNIST,CIFAR-10和CIFAR-100这3个数据集上进行验证,实验结果表明:提出的这种两阶段对抗知识迁移方法可以有效地提升精简模型的性能和鲁棒性,同时加快训练过程的收敛性. 展开更多
关键词 对抗样本 对抗训练 知识迁移 知识蒸馏
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部