期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Moderate Deviations for Parameter Estimation in the Fractional Ornstein–Uhlenbeck Processes with Periodic Mean
1
作者 Hui JIANG Shi Min LI wei gang wang 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2024年第5期1308-1324,共17页
In this paper,we study the asymptotic properties for the drift parameter estimators in the fractional Ornstein-Uhlenbeck process with periodic mean function and long range dependence.The Cremér-type moderate devi... In this paper,we study the asymptotic properties for the drift parameter estimators in the fractional Ornstein-Uhlenbeck process with periodic mean function and long range dependence.The Cremér-type moderate deviations,as well as the moderation deviation principle with explicit rate function can be obtained. 展开更多
关键词 Cramér-type moderate deviation fractional Ornstein-Uhlenbeck process parameter estimation multiple Wiener-Ito integrals
原文传递
一类随机环境中多维分枝过程的极限理论
2
作者 王伟刚 高振龙 《数学学报(中文版)》 CSCD 北大核心 2018年第3期457-468,共12页
本文根据粒子的适应度定义了一类随机环境中的多维分枝过程,研究了它的母函数,给出了母函数的递推关系式.同时计算了过程的期望和方差,类似Galton—Watson过程,讨论了它的灭绝概率,构造了一个非负鞅Wn,并在子孙分布一阶矩和二阶... 本文根据粒子的适应度定义了一类随机环境中的多维分枝过程,研究了它的母函数,给出了母函数的递推关系式.同时计算了过程的期望和方差,类似Galton—Watson过程,讨论了它的灭绝概率,构造了一个非负鞅Wn,并在子孙分布一阶矩和二阶矩有界的情况下证明了Wu依L2收敛. 展开更多
关键词 随机环境 多维分枝过程 母函数 极限
原文传递
Harmonic Moments of Branching Processes in Random Environments 被引量:3
3
作者 wei gang wang Ping LV Di He HU 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2009年第7期1087-1096,共10页
We consider harmonic moments of branching processes in general random environments. For a sequence of square integrable random variables, we give some conditions such that there is a positive constant c that every var... We consider harmonic moments of branching processes in general random environments. For a sequence of square integrable random variables, we give some conditions such that there is a positive constant c that every variable in this sequence belong to Ac or A1c uniformly. 展开更多
关键词 branching processes in random environments harmonic moments
原文传递
Dimension Results for Space-anisotropic Gaussian Random Fields 被引量:1
4
作者 Wen Qing NI Zhen Long CHEN wei gang wang 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2019年第3期391-406,共16页
Let X = {X(t) ∈ R^d, t ∈ R^N} be a centered space-anisotropic Gaussian random field whose components satisfy some mild conditions. By introducing a new anisotropic metric in R^d, we obtain the Hausdorff and packing ... Let X = {X(t) ∈ R^d, t ∈ R^N} be a centered space-anisotropic Gaussian random field whose components satisfy some mild conditions. By introducing a new anisotropic metric in R^d, we obtain the Hausdorff and packing dimension in the new metric for the image of X. Moreover, the Hausdorff dimension in the new metric for the image of X has a uniform version. 展开更多
关键词 HAUSDORFF DIMENSION PACKING DIMENSION GAUSSIAN random field UNIFORM DIMENSION
原文传递
Bounds of Deviation for Branching Chains in Random Environments 被引量:1
5
作者 wei gang wang 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2011年第5期897-904,共8页
We consider non-extinct branching processes in general random environments. Under the condition of means and second moments of each generation being bounded, we give the upper bounds and lower bounds for some form dev... We consider non-extinct branching processes in general random environments. Under the condition of means and second moments of each generation being bounded, we give the upper bounds and lower bounds for some form deviations of the process. 展开更多
关键词 Branching processes in random environments deviation upper bound lower bound
原文传递
The Limit Theorems for Random Walk with State Space R in a Space-time Random Environment
6
作者 wei gang wang Zhen Long GAO Di He HU 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2008年第4期655-662,共8页
We consider a discrete time random environment. We state that when the random walk on real number space in a environment is i.i.d., under the law, the law of large numbers, iterated law and CLT of the process are corr... We consider a discrete time random environment. We state that when the random walk on real number space in a environment is i.i.d., under the law, the law of large numbers, iterated law and CLT of the process are correct space-time random marginal annealed Using a martingale approach, we also state an a.s. invariance principle for random walks in general random environment whose hypothesis requires a subdiffusive bound on the variance of the quenched mean, under an ergodic invariant measure for the environment chain. 展开更多
关键词 space-time random environment the law of large numbers CLT iterated law invariance principle
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部