期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Global Well-posedness for the Non-viscous MHD Equations with Magnetic Diffusion in Critical Besov Spaces
1
作者 wei kui ye Zhao Yang YIN 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2022年第9期1493-1511,共19页
In this paper,we mainly investigate the Cauchy problem of the non-viscous MHD equations with magnetic diffusion.We first establish the local well-posedness(existence,uniqueness and continuous dependence)with initial d... In this paper,we mainly investigate the Cauchy problem of the non-viscous MHD equations with magnetic diffusion.We first establish the local well-posedness(existence,uniqueness and continuous dependence)with initial data(u_(0),b_(0))in critical Besov spaces B_(p,1)^(d/p+1)×B_(p,1)^(d/p)with 1≤p≤∞,and give a lifespan T of the solution which depends on the norm of the Littlewood–Paley decomposition(profile)of the initial data.Then,we prove the global existence in critical Besov spaces.In particular,the results of global existence also hold in Sobolev space C([0,∞);H~s(S~2))×(C([0,∞);H^(s-1)(S~2))∩L~2([0,∞);H~s(S~2)))with s>2,when the initial data satisfies∫_(S~2)b_(0)dx=0 and||u_(0)||B_(()∞,1~((S~2)))~1+||b_(0)||B_(()∞,1^(S~2))~0≤ε.It’s worth noting that our results imply some large and low regularity initial data for the global existence. 展开更多
关键词 The non-viscous MHD equations with magnetic diffusion local well-posedness critical Besov spaces global existence
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部