The integration of distributed generation brings in new challenges for the operation of distribution networks,including out-of-limit voltage and power flow control.Soft open points(SOP)are new power electronic devices...The integration of distributed generation brings in new challenges for the operation of distribution networks,including out-of-limit voltage and power flow control.Soft open points(SOP)are new power electronic devices that can flexibly control active and reactive power flows.With the exception of active power output,photovoltaic(PV)devices can provide reactive power compensation through an inverter.Thus,a synergetic optimization operation method for SOP and PV in a distribution network is proposed.A synergetic optimization model was developed.The voltage deviation,network loss,and ratio of photovoltaic abandonment were selected as the objective functions.The PV model was improved by considering the three reactive power output modes of the PV inverter.Both the load fluctuation and loss of the SOP were considered.Three multi-objective optimization algorithms were used,and a compromise optimal solution was calculated.Case studies were conducted using an IEEE 33-node system.The simulation results indicated that the SOP and PVs complemented each other in terms of active power transmission and reactive power compensation.Synergetic optimization improves power control capability and flexibility,providing better power quality and PV consumption rate.展开更多
Wind-photovoltaic(PV)-hydrogen-storage multi-agent energy systems are expected to play an important role in promoting renewable power utilization and decarbonization.In this study,a coordinated operation method was pr...Wind-photovoltaic(PV)-hydrogen-storage multi-agent energy systems are expected to play an important role in promoting renewable power utilization and decarbonization.In this study,a coordinated operation method was proposed for a wind-PVhydrogen-storage multi-agent energy system.First,a coordinated operation model was formulated for each agent considering peer-to-peer power trading.Second,a coordinated operation interactive framework for a multi-agent energy system was proposed based on the theory of the alternating direction method of multipliers.Third,a distributed interactive algorithm was proposed to protect the privacy of each agent and solve coordinated operation strategies.Finally,the effectiveness of the proposed coordinated operation method was tested on multi-agent energy systems with different structures,and the operational revenues of the wind power,PV,hydrogen,and energy storage agents of the proposed coordinated operation model were improved by approximately 59.19%,233.28%,16.75%,and 145.56%,respectively,compared with the independent operation model.展开更多
Adding a reputation incentive system to peer-to-peer(P2P)energy transactions can encourage prosumers to regulate their trading behavior,which is important for ensuring the efficiency and reliability of P2P transaction...Adding a reputation incentive system to peer-to-peer(P2P)energy transactions can encourage prosumers to regulate their trading behavior,which is important for ensuring the efficiency and reliability of P2P transactions.This study proposed a P2P transaction mechanism and game optimization model for prosumers involved in distributed energy sources considering reputation-value incentives.First,the deviation of P2P transactions and the non-consumption rate of distributed renewable energy in P2P transactions were established as indicators to quantify the influencing factors of the reputation value,and a reputation incentive model of P2P transactions for prosumers was constructed.Then,the penalty coefficient was applied to the cost function of the prosumers,and a non-cooperative game model of P2P transactions based on the complete information of multi-prosumers was established.Furthermore,the Nash equilibrium problem was transformed into a nonlinear optimization problem by constructing the modified optimal reaction function,and the Nash equilibrium solution of the game was obtained via a relaxation algorithm.Finally,the modified IEEE 33-node test system based on electricity market P2P and an IEEE 123-node test system were used to analyze and verify the cost and P2P participation of prosumers considering the reputation value.The results show that the addition of the reputation incentive system can encourage prosumers to standardize their interactive transaction behavior and actively participate in P2P transactions.It can also improve the operation efficiency of the power grid and promote the perfection of the P2P transaction mechanism.展开更多
Multi-energy microgrids(MEMG)play an important role in promoting carbon neutrality and achieving sustainable development.This study investigates an effective energy management strategy(EMS)for MEMG.First,an energy man...Multi-energy microgrids(MEMG)play an important role in promoting carbon neutrality and achieving sustainable development.This study investigates an effective energy management strategy(EMS)for MEMG.First,an energy management system model that allows for intra-microgrid energy conversion is developed,and the corresponding Markov decision process(MDP)problem is formulated.Subsequently,an improved double deep Q network(iDDQN)algorithm is proposed to enhance the exploration ability by modifying the calculation of the Q value,and a prioritized experience replay(PER)is introduced into the iDDQN to improve the training speed and effectiveness.Finally,taking advantage of the federated learning(FL)and iDDQN algorithms,a federated iDDQN is proposed to design an MEMG energy management strategy to enable each microgrid to share its experiences in the form of local neural network(NN)parameters with the federation layer,thus ensuring the privacy and security of data.The simulation results validate the superior performance of the proposed energy management strategy in minimizing the economic costs of the MEMG while reducing CO_2 emissions and protecting data privacy.展开更多
Peer-to-peer(P2P)energy trading refers to a type of decentralized transaction,where the energy from distributed energy resources is directly traded between peers.A key challenge in peer-to-peer energy trading is desig...Peer-to-peer(P2P)energy trading refers to a type of decentralized transaction,where the energy from distributed energy resources is directly traded between peers.A key challenge in peer-to-peer energy trading is designing a safe,efficient,and transparent trading model and operating mechanism.In this study,we consider a P2P trading environment based on blockchain technology,where prosumers can submit bids or offers without knowing the reports of others.We propose an Arrow-d’Aspremont-Gerard-Varet(AGV)-based mechanism to encourage prosumers to submit their real reserve price and determine the P2P transaction price.We demonstrate that the AGV mechanism can achieve Bayesian incentive compatibility and budget balance.Kernel density estimation(KDE)is used to derive the prior distribution from the historical bid/offer information of the agents.Case studies are carried out to analyze and evaluate the proposed mechanism.Simulation results verify the effectiveness of the proposed mechanism in guiding agents to report the true reserve price while maximizing social welfare.Moreover,we discuss the advantages of budget balance for decentralized trading by comparing the Vickrey-Clarke-Groves(VCG)and AGV mechanisms.展开更多
基金supported by the Science and Technology Project of SGCC(kj2022-075).
文摘The integration of distributed generation brings in new challenges for the operation of distribution networks,including out-of-limit voltage and power flow control.Soft open points(SOP)are new power electronic devices that can flexibly control active and reactive power flows.With the exception of active power output,photovoltaic(PV)devices can provide reactive power compensation through an inverter.Thus,a synergetic optimization operation method for SOP and PV in a distribution network is proposed.A synergetic optimization model was developed.The voltage deviation,network loss,and ratio of photovoltaic abandonment were selected as the objective functions.The PV model was improved by considering the three reactive power output modes of the PV inverter.Both the load fluctuation and loss of the SOP were considered.Three multi-objective optimization algorithms were used,and a compromise optimal solution was calculated.Case studies were conducted using an IEEE 33-node system.The simulation results indicated that the SOP and PVs complemented each other in terms of active power transmission and reactive power compensation.Synergetic optimization improves power control capability and flexibility,providing better power quality and PV consumption rate.
基金supported by the Key Research and Development Program of Jiangsu Provincial Department of Science and Technology(BE2020081).
文摘Wind-photovoltaic(PV)-hydrogen-storage multi-agent energy systems are expected to play an important role in promoting renewable power utilization and decarbonization.In this study,a coordinated operation method was proposed for a wind-PVhydrogen-storage multi-agent energy system.First,a coordinated operation model was formulated for each agent considering peer-to-peer power trading.Second,a coordinated operation interactive framework for a multi-agent energy system was proposed based on the theory of the alternating direction method of multipliers.Third,a distributed interactive algorithm was proposed to protect the privacy of each agent and solve coordinated operation strategies.Finally,the effectiveness of the proposed coordinated operation method was tested on multi-agent energy systems with different structures,and the operational revenues of the wind power,PV,hydrogen,and energy storage agents of the proposed coordinated operation model were improved by approximately 59.19%,233.28%,16.75%,and 145.56%,respectively,compared with the independent operation model.
基金supported by the National Natural Science Foundation of China(U2066211,52177124,52107134)the Institute of Electrical Engineering,CAS(E155610101)+1 种基金the DNL Cooperation Fund,CAS(DNL202023)the Youth Innovation Promotion Association of CAS(2019143).
文摘Adding a reputation incentive system to peer-to-peer(P2P)energy transactions can encourage prosumers to regulate their trading behavior,which is important for ensuring the efficiency and reliability of P2P transactions.This study proposed a P2P transaction mechanism and game optimization model for prosumers involved in distributed energy sources considering reputation-value incentives.First,the deviation of P2P transactions and the non-consumption rate of distributed renewable energy in P2P transactions were established as indicators to quantify the influencing factors of the reputation value,and a reputation incentive model of P2P transactions for prosumers was constructed.Then,the penalty coefficient was applied to the cost function of the prosumers,and a non-cooperative game model of P2P transactions based on the complete information of multi-prosumers was established.Furthermore,the Nash equilibrium problem was transformed into a nonlinear optimization problem by constructing the modified optimal reaction function,and the Nash equilibrium solution of the game was obtained via a relaxation algorithm.Finally,the modified IEEE 33-node test system based on electricity market P2P and an IEEE 123-node test system were used to analyze and verify the cost and P2P participation of prosumers considering the reputation value.The results show that the addition of the reputation incentive system can encourage prosumers to standardize their interactive transaction behavior and actively participate in P2P transactions.It can also improve the operation efficiency of the power grid and promote the perfection of the P2P transaction mechanism.
基金supported by the Research and Development of Key Technologies of the Regional Energy Internet based on Multi-Energy Complementary and Collaborative Optimization(BE2020081)。
文摘Multi-energy microgrids(MEMG)play an important role in promoting carbon neutrality and achieving sustainable development.This study investigates an effective energy management strategy(EMS)for MEMG.First,an energy management system model that allows for intra-microgrid energy conversion is developed,and the corresponding Markov decision process(MDP)problem is formulated.Subsequently,an improved double deep Q network(iDDQN)algorithm is proposed to enhance the exploration ability by modifying the calculation of the Q value,and a prioritized experience replay(PER)is introduced into the iDDQN to improve the training speed and effectiveness.Finally,taking advantage of the federated learning(FL)and iDDQN algorithms,a federated iDDQN is proposed to design an MEMG energy management strategy to enable each microgrid to share its experiences in the form of local neural network(NN)parameters with the federation layer,thus ensuring the privacy and security of data.The simulation results validate the superior performance of the proposed energy management strategy in minimizing the economic costs of the MEMG while reducing CO_2 emissions and protecting data privacy.
基金supported by National Natural Science Foundation of China(U2066211,52177124,52107134)the Institute of Electrical Engineering,CAS(E155610101)+1 种基金the DNL Cooperation Fund,CAS(DNL202023)the Youth Innovation Promotion Association of CAS(2019143).
文摘Peer-to-peer(P2P)energy trading refers to a type of decentralized transaction,where the energy from distributed energy resources is directly traded between peers.A key challenge in peer-to-peer energy trading is designing a safe,efficient,and transparent trading model and operating mechanism.In this study,we consider a P2P trading environment based on blockchain technology,where prosumers can submit bids or offers without knowing the reports of others.We propose an Arrow-d’Aspremont-Gerard-Varet(AGV)-based mechanism to encourage prosumers to submit their real reserve price and determine the P2P transaction price.We demonstrate that the AGV mechanism can achieve Bayesian incentive compatibility and budget balance.Kernel density estimation(KDE)is used to derive the prior distribution from the historical bid/offer information of the agents.Case studies are carried out to analyze and evaluate the proposed mechanism.Simulation results verify the effectiveness of the proposed mechanism in guiding agents to report the true reserve price while maximizing social welfare.Moreover,we discuss the advantages of budget balance for decentralized trading by comparing the Vickrey-Clarke-Groves(VCG)and AGV mechanisms.