In this paper, we present a blind steganalysis based on feature fusion. Features based on Short Time Fourier Transform (STFT), which consists of second-order derivative spectrum features of audio and Mel-frequency cep...In this paper, we present a blind steganalysis based on feature fusion. Features based on Short Time Fourier Transform (STFT), which consists of second-order derivative spectrum features of audio and Mel-frequency cepstrum coefficients, audio quality metrics and features on linear prediction residue are extracted separately. Then feature fusion is conducted. The performance of the proposed steganalysis is evaluated against 4 steganographic schemes: Direct Sequence Spread Spectrum (DSSS), Quantization Index Modulation (QIM), ECHO embedding (ECHO), and Least Significant Bit em-bedding (LSB). Experiment results show that the classifying performance of the proposed detector is much superior to the previous work. Even more exciting is that the proposed methodology could detect the four steganography, with 85%+ classification accuracy achieved in all the detections, which makes the proposed steganalysis methodology capable of being regarded as a blind steganalysis, and especially useful when the steganalyzer are without the knowledge of the steganographic scheme employed in data embedding.展开更多
基金Supported by the National Natural Science Foundation of China(No.61071173)
文摘In this paper, we present a blind steganalysis based on feature fusion. Features based on Short Time Fourier Transform (STFT), which consists of second-order derivative spectrum features of audio and Mel-frequency cepstrum coefficients, audio quality metrics and features on linear prediction residue are extracted separately. Then feature fusion is conducted. The performance of the proposed steganalysis is evaluated against 4 steganographic schemes: Direct Sequence Spread Spectrum (DSSS), Quantization Index Modulation (QIM), ECHO embedding (ECHO), and Least Significant Bit em-bedding (LSB). Experiment results show that the classifying performance of the proposed detector is much superior to the previous work. Even more exciting is that the proposed methodology could detect the four steganography, with 85%+ classification accuracy achieved in all the detections, which makes the proposed steganalysis methodology capable of being regarded as a blind steganalysis, and especially useful when the steganalyzer are without the knowledge of the steganographic scheme employed in data embedding.