期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Predicting abnormal trading behavior from internet rumor propagation:a machine learning approach
1
作者 Li‑Chen Cheng wei‑ting lu Benjamin Yeo 《Financial Innovation》 2023年第1期56-78,共23页
In 2021,the abnormal short-term price fluctuations of GameStop,which were triggered by internet stock discussions,drew the attention of academics,financial analysts,and stock trading commissions alike,prompting calls ... In 2021,the abnormal short-term price fluctuations of GameStop,which were triggered by internet stock discussions,drew the attention of academics,financial analysts,and stock trading commissions alike,prompting calls to address such events and maintain market stability.However,the impact of stock discussions on volatile trading behavior has received comparatively less attention than traditional fundamentals.Furthermore,data mining methods are less often used to predict stock trading despite their higher accuracy.This study adopts an innovative approach using social media data to obtain stock rumors,and then trains three decision trees to demonstrate the impact of rumor propagation on stock trading behavior.Our findings show that rumor propagation outperforms traditional fundamentals in predicting abnormal trading behavior.The study serves as an impetus for further research using data mining as a method of inquiry. 展开更多
关键词 Fake news RUMORS Data mining Social media Classification Machine learning GameStop Reddit
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部