Based on numerical solutions of the time-dependent Schr ¨odinger equation, we theoretically investigate the photoelectron spectrum of hydrogen atoms ionized by a pair of ultrashort, intense, and orthogonally pola...Based on numerical solutions of the time-dependent Schr ¨odinger equation, we theoretically investigate the photoelectron spectrum of hydrogen atoms ionized by a pair of ultrashort, intense, and orthogonally polarized laser pulses with a relative time delay in a pump–probe configuration. The pump pulse resonantly excites electrons from the 1s and 2p levels,inducing Rabi oscillations. The resulting dynamically enhanced Autler–Townes(AT) splitting is observed in the photoelectron energy spectrum upon interaction with the second probe pulse. In contrast to the previous parallel-polarization scheme, the proposed orthogonal-polarization configuration enables the resolution of dynamically enhanced AT splitting over a considerably wider range of probe photon energies.展开更多
We develop a numerical scheme for solving the one-dimensional(1D)time-dependent Schrödinger equation(TDSE),and use it to study the strong-field photoionization of the atomic hydrogen.The photoelectron energy spec...We develop a numerical scheme for solving the one-dimensional(1D)time-dependent Schrödinger equation(TDSE),and use it to study the strong-field photoionization of the atomic hydrogen.The photoelectron energy spectra obtained for pulses ranging from XUV to near infrared are compared in detail to the spectra calculated with our well-developed code for accurately solving the three-dimensional(3D)TDSE.For XUV pulses,our discussions cover intensities at which the ionization is in the perturbative and nonperturbative regimes.For pulses of 400 nm or longer wavelengths,we distinguish the multiphoton and tunneling regimes.Similarities and discrepancies between the 1D and 3D calculations in each regime are discussed.The observed discrepancies mainly originate from the differences in the transition matrix elements and the energy level structures created in the 1D and 3D calculations.展开更多
Abstract We develop a highly efficient scheme for numerically solving the three-dimensional time-dependent Schrödinger equation of the single-active-electron atom in the field of laser pulses by combining smooth ...Abstract We develop a highly efficient scheme for numerically solving the three-dimensional time-dependent Schrödinger equation of the single-active-electron atom in the field of laser pulses by combining smooth exterior complex scaling(SECS)absorbing method and Arnoldi propagation method.Such combination has not been reported in the literature.The proposed scheme is particularly useful in the applications involving long-time wave propagation.The SECS is a wonderful absorber,but its application results in a non-Hermitian Hamiltonian,invalidating propagators utilizing the Hermitian symmetry of the Hamiltonian.We demonstrate that the routine Arnoldi propagator can be modified to treat the non-Hermitian Hamiltonian.The efficiency of the proposed scheme is checked by tracking the time-dependent electron wave packet in the case of both weak extreme ultraviolet(XUV)and strong infrared(IR)laser pulses.Both perfect absorption and stable propagation are observed.展开更多
We propose a scheme that utilizes weak-field-induced quantum beats to investigate the electronic coherences of atoms driven by a strong attosecond extreme ultraviolet(XUV)pulse.The technique involves using a strong XU...We propose a scheme that utilizes weak-field-induced quantum beats to investigate the electronic coherences of atoms driven by a strong attosecond extreme ultraviolet(XUV)pulse.The technique involves using a strong XUV pump pulse to excite and ionize atoms and a time-delayed weak short pulse to probe the photoelectron signal.Our theoretical analysis demonstrates that the information regarding the bound states,initiated by the strong pump pulse,can be precisely reconstructed from the weak-field-induced quantum beat spectrum.To examine this scheme,we apply it to the attosecond XUV laser-induced ionization of hydrogen atoms by solving a three-dimensional time-dependent Schr?dinger equation.This work provides an essential reference for reconstructing the ultrafast dynamics of bound states induced by strong XUV attosecond pulses.展开更多
Interaction of intense laser fields with atoms distorts the bound-state electron cloud.Tracing the temporal response of the electron cloud to the laser field is of fundamental importance for understanding the ultrafas...Interaction of intense laser fields with atoms distorts the bound-state electron cloud.Tracing the temporal response of the electron cloud to the laser field is of fundamental importance for understanding the ultrafast dynamics of various nonlinear phenomena of matter,but it is particularly challenging.Here,we show that the ultrafast response of the atomic electron cloud to the intense high-frequency laser pulses can be probed with the attosecond time-resolved photoelectron holography.In this method,an infrared laser pulse is employed to trigger tunneling ionization of the deforming atom.The shape of the deforming electron cloud is encoded in the hologram of the photoelectron momentum distribution.As a demonstration,by solving the time-dependent Schrödinger equation,we show that the adiabatic deforming of the bound-state electron cloud,as well as the nonadiabatic transition among the distorted states,is successfully tracked with attosecond resolution.Our work films the formation process of the metastable Kramers-Henneberger states in the intense high-frequency laser pulses.This establishes a novel approach for time-resolved imaging of the ultrafast bound-state electron processes in intense laser fields.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.12074265,12234002,and 92250303)the Guangdong Basic and Applied Basic Research Foundation(Grant No.2022A1515010329)。
文摘Based on numerical solutions of the time-dependent Schr ¨odinger equation, we theoretically investigate the photoelectron spectrum of hydrogen atoms ionized by a pair of ultrashort, intense, and orthogonally polarized laser pulses with a relative time delay in a pump–probe configuration. The pump pulse resonantly excites electrons from the 1s and 2p levels,inducing Rabi oscillations. The resulting dynamically enhanced Autler–Townes(AT) splitting is observed in the photoelectron energy spectrum upon interaction with the second probe pulse. In contrast to the previous parallel-polarization scheme, the proposed orthogonal-polarization configuration enables the resolution of dynamically enhanced AT splitting over a considerably wider range of probe photon energies.
基金Project supported by the National Natural Science Foundation of China(Gant Nos.12074265,11804233,and 11575118)the National Key Research and Development Project of China(Grant No.2017YFF0106500)+1 种基金the Natural Science Foundation of Guangdong,China(Grant Nos.2018A0303130311 and 2021A1515010082)the Shenzhen Fundamental Research Program(Grant Nos.KQJSCX20180328093801773,JCYJ20180305124540632,and JCYJ20190808121405740).
文摘We develop a numerical scheme for solving the one-dimensional(1D)time-dependent Schrödinger equation(TDSE),and use it to study the strong-field photoionization of the atomic hydrogen.The photoelectron energy spectra obtained for pulses ranging from XUV to near infrared are compared in detail to the spectra calculated with our well-developed code for accurately solving the three-dimensional(3D)TDSE.For XUV pulses,our discussions cover intensities at which the ionization is in the perturbative and nonperturbative regimes.For pulses of 400 nm or longer wavelengths,we distinguish the multiphoton and tunneling regimes.Similarities and discrepancies between the 1D and 3D calculations in each regime are discussed.The observed discrepancies mainly originate from the differences in the transition matrix elements and the energy level structures created in the 1D and 3D calculations.
基金the National Natural Science Foundation of China(Grant Nos.12074265 and 11804233).
文摘Abstract We develop a highly efficient scheme for numerically solving the three-dimensional time-dependent Schrödinger equation of the single-active-electron atom in the field of laser pulses by combining smooth exterior complex scaling(SECS)absorbing method and Arnoldi propagation method.Such combination has not been reported in the literature.The proposed scheme is particularly useful in the applications involving long-time wave propagation.The SECS is a wonderful absorber,but its application results in a non-Hermitian Hamiltonian,invalidating propagators utilizing the Hermitian symmetry of the Hamiltonian.We demonstrate that the routine Arnoldi propagator can be modified to treat the non-Hermitian Hamiltonian.The efficiency of the proposed scheme is checked by tracking the time-dependent electron wave packet in the case of both weak extreme ultraviolet(XUV)and strong infrared(IR)laser pulses.Both perfect absorption and stable propagation are observed.
基金supported by the National Natural Science Foundation of China(Nos.12088101,12047548,12074265,and U2330401)Science Challenge Project(No.TZ2018005)Guangdong Basic and Applied Basic Research Foundation(No.2022A1515010329)。
文摘We propose a scheme that utilizes weak-field-induced quantum beats to investigate the electronic coherences of atoms driven by a strong attosecond extreme ultraviolet(XUV)pulse.The technique involves using a strong XUV pump pulse to excite and ionize atoms and a time-delayed weak short pulse to probe the photoelectron signal.Our theoretical analysis demonstrates that the information regarding the bound states,initiated by the strong pump pulse,can be precisely reconstructed from the weak-field-induced quantum beat spectrum.To examine this scheme,we apply it to the attosecond XUV laser-induced ionization of hydrogen atoms by solving a three-dimensional time-dependent Schr?dinger equation.This work provides an essential reference for reconstructing the ultrafast dynamics of bound states induced by strong XUV attosecond pulses.
基金National Key Research and Development Program of China(2019YFA0308300)National Natural Science Foundation of China(11874163,12074265 and 12021004)。
文摘Interaction of intense laser fields with atoms distorts the bound-state electron cloud.Tracing the temporal response of the electron cloud to the laser field is of fundamental importance for understanding the ultrafast dynamics of various nonlinear phenomena of matter,but it is particularly challenging.Here,we show that the ultrafast response of the atomic electron cloud to the intense high-frequency laser pulses can be probed with the attosecond time-resolved photoelectron holography.In this method,an infrared laser pulse is employed to trigger tunneling ionization of the deforming atom.The shape of the deforming electron cloud is encoded in the hologram of the photoelectron momentum distribution.As a demonstration,by solving the time-dependent Schrödinger equation,we show that the adiabatic deforming of the bound-state electron cloud,as well as the nonadiabatic transition among the distorted states,is successfully tracked with attosecond resolution.Our work films the formation process of the metastable Kramers-Henneberger states in the intense high-frequency laser pulses.This establishes a novel approach for time-resolved imaging of the ultrafast bound-state electron processes in intense laser fields.