According to the good charge transporting property of perovskite, we design and simulate a p–i–n-type all-perovskite solar cell by using one-dimensional device simulator. The perovskite charge transporting layers an...According to the good charge transporting property of perovskite, we design and simulate a p–i–n-type all-perovskite solar cell by using one-dimensional device simulator. The perovskite charge transporting layers and the perovskite absorber constitute the all-perovskite cell. By modulating the cell parameters, such as layer thickness values, doping concentrations and energy bands of n-, i-, and p-type perovskite layers, the all-perovskite solar cell obtains a high power conversion efficiency of 25.84%. The band matched cell shows appreciably improved performance with widen absorption spectrum and lowered recombination rate, so weobtain a high J_(sc) of 32.47 m A/cm^2. The small series resistance of the all-perovskite solar cell also benefits the high J_(sc). The simulation provides a novel thought of designing perovskite solar cells with simple producing process, low production cost and high efficient structure to solve the energy problem.展开更多
We study the electronic and magnetic properties of an oxygen-deficient perovskite Ca2Mn2O5 based on the first principle calculations. The calculations show that the ground state of Ca2Mn2O5 is a D-type anti-ferromagne...We study the electronic and magnetic properties of an oxygen-deficient perovskite Ca2Mn2O5 based on the first principle calculations. The calculations show that the ground state of Ca2Mn2O5 is a D-type anti-ferromagnetic structure with the anti-ferromagnetic spin coupling along the c-direction. The corresponding electronic structure of the D-type state is investigated, and the results display that Ca2Mn2O5 is an insulator with an indirect energy gap of -2.08eV. By the partiM density-of-state analysis, the valence band maximum is mainly contributed to by the 0-213 orbitMs and the conduction band minimum is contributed to by the 0-213 and Mn-3d orbitals. Due to the Coulomb repulsion interaction between electrons, the density of state of Mn-3d is pulled to -6--4.5eV.展开更多
The ability to recognize and differentiate between conspecifics and heterospecifics as well as their signals is critical for the coexistence of closely related species.In the genus Rattus,species are morphologically s...The ability to recognize and differentiate between conspecifics and heterospecifics as well as their signals is critical for the coexistence of closely related species.In the genus Rattus,species are morphologically similar and multiple species often coexist.Here,we investigated the interspecific recognition and signal differentiation of two sympatric rat species,the brown rat(Rattus norvegicus,RN)and the Asian house rat(Rattus tanezumi,RT).In a two-way choice test,both RN and RT females showed a preference for conspecific male rats to heterospecific ones.RT females showed a significant preference for accessible urine of males of same species to those of other species,but not for the inaccessi-ble urine.On the other hand,there were significant differences in the structural characteristics of the ultrasonic vocalization emitted by males of these two rat species.Sodium dodecyl sulphate-polyacrylamide gel electrophoresis(SDS-PAGE)and isoelectric focusing electrophoresis unveiled that major urinary proteins(MUPs)in voided urine were more highly expressed in RN males versus RT males.The interspecific dif-ferences of urinary volatile compounds were also discussed.In conclusion,female rats had the ability to distinguish between males of either species.展开更多
CO poisoning is one of the obstacles for platinum catalysts toward the electro-catalysis process for proton exchange membrane fuel cell(PEMFC)or direct methanol fuel cell(DMFC).Herein,we aim to weaken the CO poisoning...CO poisoning is one of the obstacles for platinum catalysts toward the electro-catalysis process for proton exchange membrane fuel cell(PEMFC)or direct methanol fuel cell(DMFC).Herein,we aim to weaken the CO poisoning on Pt by varying the cluster sizes and supports via doping graphene with B and N based on DFT+D3 calculations.展开更多
基金Project supported by the Graduate Student Education Teaching Reform Project,China(Grant No.JG201512)the Young Teachers Research Project of Yanshan University,China(Grant No.13LGB028)
文摘According to the good charge transporting property of perovskite, we design and simulate a p–i–n-type all-perovskite solar cell by using one-dimensional device simulator. The perovskite charge transporting layers and the perovskite absorber constitute the all-perovskite cell. By modulating the cell parameters, such as layer thickness values, doping concentrations and energy bands of n-, i-, and p-type perovskite layers, the all-perovskite solar cell obtains a high power conversion efficiency of 25.84%. The band matched cell shows appreciably improved performance with widen absorption spectrum and lowered recombination rate, so weobtain a high J_(sc) of 32.47 m A/cm^2. The small series resistance of the all-perovskite solar cell also benefits the high J_(sc). The simulation provides a novel thought of designing perovskite solar cells with simple producing process, low production cost and high efficient structure to solve the energy problem.
基金Supported by the National Basic Research Program of China under Grant No 2014CB931703the National Natural Science Foundation of China under Grant Nos 11404172,51101088,and 51171082the Fundamental Research Funds for the Central Universities
文摘We study the electronic and magnetic properties of an oxygen-deficient perovskite Ca2Mn2O5 based on the first principle calculations. The calculations show that the ground state of Ca2Mn2O5 is a D-type anti-ferromagnetic structure with the anti-ferromagnetic spin coupling along the c-direction. The corresponding electronic structure of the D-type state is investigated, and the results display that Ca2Mn2O5 is an insulator with an indirect energy gap of -2.08eV. By the partiM density-of-state analysis, the valence band maximum is mainly contributed to by the 0-213 orbitMs and the conduction band minimum is contributed to by the 0-213 and Mn-3d orbitals. Due to the Coulomb repulsion interaction between electrons, the density of state of Mn-3d is pulled to -6--4.5eV.
基金supported by grants from the National Key R&D Program of China(No.6692022YFC2602500)the National Natural Science Foundation of China(grant nos.32070451 to Y.H.Z.and 31872227 to J.X.Z.).
文摘The ability to recognize and differentiate between conspecifics and heterospecifics as well as their signals is critical for the coexistence of closely related species.In the genus Rattus,species are morphologically similar and multiple species often coexist.Here,we investigated the interspecific recognition and signal differentiation of two sympatric rat species,the brown rat(Rattus norvegicus,RN)and the Asian house rat(Rattus tanezumi,RT).In a two-way choice test,both RN and RT females showed a preference for conspecific male rats to heterospecific ones.RT females showed a significant preference for accessible urine of males of same species to those of other species,but not for the inaccessi-ble urine.On the other hand,there were significant differences in the structural characteristics of the ultrasonic vocalization emitted by males of these two rat species.Sodium dodecyl sulphate-polyacrylamide gel electrophoresis(SDS-PAGE)and isoelectric focusing electrophoresis unveiled that major urinary proteins(MUPs)in voided urine were more highly expressed in RN males versus RT males.The interspecific dif-ferences of urinary volatile compounds were also discussed.In conclusion,female rats had the ability to distinguish between males of either species.
基金financially supported by the National Natural Science Foundation of China(No.21975136)the Open Funds from National Engineering Lab for Mobile Source Emission Control Technology(No.NELMS2020A12)。
文摘CO poisoning is one of the obstacles for platinum catalysts toward the electro-catalysis process for proton exchange membrane fuel cell(PEMFC)or direct methanol fuel cell(DMFC).Herein,we aim to weaken the CO poisoning on Pt by varying the cluster sizes and supports via doping graphene with B and N based on DFT+D3 calculations.