Oceanic uptake and storage of anthropogenic CO_(2)(CANT)are regulated by ocean circulation and ventilation.To decipher the storage and redistribution of CANT in the western North Pacific,where a major CANT sink develo...Oceanic uptake and storage of anthropogenic CO_(2)(CANT)are regulated by ocean circulation and ventilation.To decipher the storage and redistribution of CANT in the western North Pacific,where a major CANT sink develops,we investigated the water column carbonate system,dissolved inorganic radiocarbon and ancillary parameters in May and August 2018,spanning the Kuroshio Extension(KE,35-39°N),Kuroshio Recirculation(KR,27-35°N)and subtropical(21-27°N)zones.Water column CANT inventories were estimated to be 40.5±1.1 mol m^(-2) in the KR zone and 37.2±0.9 mol m^(-2) in the subtropical zone.In comparison with historical data obtained in 2005,relatively high rates of increase of the CANT inventory of 1.05±0.20 and 1.03±0.12 mol m^(-2) yr^(-1) in the recent decade were obtained in the KR and subtropical zones,respectively.Our water-mass-based analyses suggest that formation and transport of subtropical mode water dominate the deep penetration,storage,and redistribution of CANT in those two regions.In the KE zone,however,both the water column CANT inventory and the decadal CANT accumulation rate were small and uncertain owing to the dynamic hydrology,where the naturally uplifting isopycnal surfaces make CANT penetration relatively shallow.The findings of this study improve the understanding of the spatiotemporal variations of CANT distribution,storage,and transport in the western North Pacific.展开更多
The integration of ultrasonic vibration into sheet forming process can significantly reduce the forming force and bring benefits including the enhancement of surface quality,the enhancement of formability and the redu...The integration of ultrasonic vibration into sheet forming process can significantly reduce the forming force and bring benefits including the enhancement of surface quality,the enhancement of formability and the reduction of spring-back.However,the influencing mechanisms of the high-frequency vibration on parts properties during the incremental sheet forming(ISF)process are not well known,preventing a more efficient forming system.This paper comprehensively investigates the effects of different process parameters(vibration amplitude,step-down size,rotation speed and forming angle)on the micro-hardness,minimum thickness,forming limit and residual stress of the formed parts.First,a series of truncated pyramids were formed with an experimental platform designed for the ultrasonic-assisted incremental sheet forming.Then,microhardness tests,minimum thickness measurements and residual stress tests were performed for the formed parts.The results showed that the surface micro-hardness of the formed part was reduced since the vibration stress induced by the ultrasonic vibration within the material which eliminated the original internal stress.The superimposed University,Beijing 100083,People’s Republic of China ultrasonic vibration can effectively uniform the residual stress and thickness distribution,arid improve the forming limit in the case of the small deformation rate.In addition,through the tensile fracture analysis of the formed part,it is shown that the elongation of material is improved and the elastic modulus and hardening index are decreased.The findings of the present work lay the foundation for a better integration of the ultrasonic vibration system into the incremental sheet forming process.展开更多
基金The research was supported by the National Natural Science Foundation of China(42141001 and 91858210).
文摘Oceanic uptake and storage of anthropogenic CO_(2)(CANT)are regulated by ocean circulation and ventilation.To decipher the storage and redistribution of CANT in the western North Pacific,where a major CANT sink develops,we investigated the water column carbonate system,dissolved inorganic radiocarbon and ancillary parameters in May and August 2018,spanning the Kuroshio Extension(KE,35-39°N),Kuroshio Recirculation(KR,27-35°N)and subtropical(21-27°N)zones.Water column CANT inventories were estimated to be 40.5±1.1 mol m^(-2) in the KR zone and 37.2±0.9 mol m^(-2) in the subtropical zone.In comparison with historical data obtained in 2005,relatively high rates of increase of the CANT inventory of 1.05±0.20 and 1.03±0.12 mol m^(-2) yr^(-1) in the recent decade were obtained in the KR and subtropical zones,respectively.Our water-mass-based analyses suggest that formation and transport of subtropical mode water dominate the deep penetration,storage,and redistribution of CANT in those two regions.In the KE zone,however,both the water column CANT inventory and the decadal CANT accumulation rate were small and uncertain owing to the dynamic hydrology,where the naturally uplifting isopycnal surfaces make CANT penetration relatively shallow.The findings of this study improve the understanding of the spatiotemporal variations of CANT distribution,storage,and transport in the western North Pacific.
基金supported by the National Natural Science Foundation of China(Grant Nos.51975328,51605258)the Postdoctoral Innovation Project of Shandong Province(Grant No.201701011)Young Scholars Program of Shandong University(Grant No.2018WLJH55).
文摘The integration of ultrasonic vibration into sheet forming process can significantly reduce the forming force and bring benefits including the enhancement of surface quality,the enhancement of formability and the reduction of spring-back.However,the influencing mechanisms of the high-frequency vibration on parts properties during the incremental sheet forming(ISF)process are not well known,preventing a more efficient forming system.This paper comprehensively investigates the effects of different process parameters(vibration amplitude,step-down size,rotation speed and forming angle)on the micro-hardness,minimum thickness,forming limit and residual stress of the formed parts.First,a series of truncated pyramids were formed with an experimental platform designed for the ultrasonic-assisted incremental sheet forming.Then,microhardness tests,minimum thickness measurements and residual stress tests were performed for the formed parts.The results showed that the surface micro-hardness of the formed part was reduced since the vibration stress induced by the ultrasonic vibration within the material which eliminated the original internal stress.The superimposed University,Beijing 100083,People’s Republic of China ultrasonic vibration can effectively uniform the residual stress and thickness distribution,arid improve the forming limit in the case of the small deformation rate.In addition,through the tensile fracture analysis of the formed part,it is shown that the elongation of material is improved and the elastic modulus and hardening index are decreased.The findings of the present work lay the foundation for a better integration of the ultrasonic vibration system into the incremental sheet forming process.