Polylactide(PLA)has often been blended with biodegradable poly(butylene adipate-co-terephthalate)(PBAT)to improve its toughness.However,the strength and heat resistance of PLA are always sacrificed.Herein,exchangeable...Polylactide(PLA)has often been blended with biodegradable poly(butylene adipate-co-terephthalate)(PBAT)to improve its toughness.However,the strength and heat resistance of PLA are always sacrificed.Herein,exchangeable hydroxyl-ester crosslinks are constructed in PLA/PBAT blends by successively introducing a tertiary amine-containing polyol,bis-(2-hydroxyethyl)amino-tris(hydroxymethyl)methane(BTM)and 4,4’-diphenylmethane diisocyanate(MDI)via reactive blending.BTM can react with both PLA and PBAT by transesterification,generating PLA or PBAT chains with terminal or pendant hydroxyl groups,which can then react with MDI to form networks.With internal catalysis of tertiary amine moiety in BTM,transesterification between the residual hydroxyl groups and ester bonds can occur at high temperatures,endowing the PLA/PBAT network with vitrimeric properties.Owning to the transesterification and chain extension reactions with MDI between PLA and PBAT,the interfacial adhesion is greatly improved.As a result of the excellent interfacial adhesion and the network structure,the prepared PLA/PBAT blends show greatly enhanced heat resistance and toughness(more than 40 times that of PLA)while maintaining high stiffness comparable to PLA.Furthermore,the prepared PLA/PBAT blends exhibit promising reconfigurable shape memory behavior.The present work provides a new and facile way to achieve high-performance and functional biodegradable polymeric materials.展开更多
In this work, hydroxyl-terminated oxalamide compounds N^(1),N^(2)-bis(2-hydroxyethyl)oxalamide(OXA1) and N^(1),N^(1)′-(ethane-1,2-diyl)bis(N^(2)-(2-hydroxyethyl)oxalamide(OXA2) were synthesized to initiate the ring-o...In this work, hydroxyl-terminated oxalamide compounds N^(1),N^(2)-bis(2-hydroxyethyl)oxalamide(OXA1) and N^(1),N^(1)′-(ethane-1,2-diyl)bis(N^(2)-(2-hydroxyethyl)oxalamide(OXA2) were synthesized to initiate the ring-opening polymerization of L-lactide for preparation of oxalamide-hybridized poly(L-lactide)(PLA_(OXA)), i.e., PLA_(OXA1) and PLA_(OXA2). The crystallization properties of PLA were improved by the self-assembly of the oxalamide segments in PLA_(OXA) which served as the initial heterogeneous nuclei. The crystal growth kinetics was studied by HoffmanLauritzen theory and it revealed that the nucleation energy barrier of PLA_(OXA1) and PLA_(OXA2) was lower than that of PLA. Consequently, PLA_(OXA) could crystallize much faster than PLA, accompanied with a decrease in spherulite size and half-life crystallization time by 74.8% and 86.5%(T=125 ℃), respectively. In addition, the final crystallinity of PLA_(OXA1) and PLA_(OXA2) was 6 and 8 times higher, respectively, in comparison with that of neat PLA under a controlled cooling rate of 10 ℃/min. The results demonstrate that the hybridization of oxalamide segments in PLA backbone will serve as the self-heteronucleation for promoting the crystallization rate. The higher the content of oxalamide segments(PLA_(OXA2) compared with PLA_(OXA1)) is, the stronger the promotion effect will be. Therefore, this study may provide a universal approach by hybridizing macromolecular structure to facilitate the crystallization of semi-crystalline polymer materials.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.21975108 and 52103082)Fundamental Research Funds for the Central Universities(No.JUSRP122016)Wuxi"Light of Taihu Lake"Science and Technology Research Plan(Basic Research,No.K20221008).
文摘Polylactide(PLA)has often been blended with biodegradable poly(butylene adipate-co-terephthalate)(PBAT)to improve its toughness.However,the strength and heat resistance of PLA are always sacrificed.Herein,exchangeable hydroxyl-ester crosslinks are constructed in PLA/PBAT blends by successively introducing a tertiary amine-containing polyol,bis-(2-hydroxyethyl)amino-tris(hydroxymethyl)methane(BTM)and 4,4’-diphenylmethane diisocyanate(MDI)via reactive blending.BTM can react with both PLA and PBAT by transesterification,generating PLA or PBAT chains with terminal or pendant hydroxyl groups,which can then react with MDI to form networks.With internal catalysis of tertiary amine moiety in BTM,transesterification between the residual hydroxyl groups and ester bonds can occur at high temperatures,endowing the PLA/PBAT network with vitrimeric properties.Owning to the transesterification and chain extension reactions with MDI between PLA and PBAT,the interfacial adhesion is greatly improved.As a result of the excellent interfacial adhesion and the network structure,the prepared PLA/PBAT blends show greatly enhanced heat resistance and toughness(more than 40 times that of PLA)while maintaining high stiffness comparable to PLA.Furthermore,the prepared PLA/PBAT blends exhibit promising reconfigurable shape memory behavior.The present work provides a new and facile way to achieve high-performance and functional biodegradable polymeric materials.
基金financially supported by the National Natural Science Foundation of China(No.51873082)the MOE&SAFEA 111 Project(No.B13025)+1 种基金the Opening Project of Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics(Beijing Technology and Business University)(No.QETHSP2019003)the Postgraduate Research&Practice Innovation Program of Jiangnan University(No.JNKY19020)。
文摘In this work, hydroxyl-terminated oxalamide compounds N^(1),N^(2)-bis(2-hydroxyethyl)oxalamide(OXA1) and N^(1),N^(1)′-(ethane-1,2-diyl)bis(N^(2)-(2-hydroxyethyl)oxalamide(OXA2) were synthesized to initiate the ring-opening polymerization of L-lactide for preparation of oxalamide-hybridized poly(L-lactide)(PLA_(OXA)), i.e., PLA_(OXA1) and PLA_(OXA2). The crystallization properties of PLA were improved by the self-assembly of the oxalamide segments in PLA_(OXA) which served as the initial heterogeneous nuclei. The crystal growth kinetics was studied by HoffmanLauritzen theory and it revealed that the nucleation energy barrier of PLA_(OXA1) and PLA_(OXA2) was lower than that of PLA. Consequently, PLA_(OXA) could crystallize much faster than PLA, accompanied with a decrease in spherulite size and half-life crystallization time by 74.8% and 86.5%(T=125 ℃), respectively. In addition, the final crystallinity of PLA_(OXA1) and PLA_(OXA2) was 6 and 8 times higher, respectively, in comparison with that of neat PLA under a controlled cooling rate of 10 ℃/min. The results demonstrate that the hybridization of oxalamide segments in PLA backbone will serve as the self-heteronucleation for promoting the crystallization rate. The higher the content of oxalamide segments(PLA_(OXA2) compared with PLA_(OXA1)) is, the stronger the promotion effect will be. Therefore, this study may provide a universal approach by hybridizing macromolecular structure to facilitate the crystallization of semi-crystalline polymer materials.