One-dimensional nanowire is an important candidate for lead-halide perovskite-based photonic detectors and solar cells. Its surface population, diameter, and growth direction, etc., are critical for device performance...One-dimensional nanowire is an important candidate for lead-halide perovskite-based photonic detectors and solar cells. Its surface population, diameter, and growth direction, etc., are critical for device performance. In this research,we carried out a detailed study on electron transfer process at the interface of nanowire CH_(3) NH_(3) PbI_(3)(N-MAPbI_(3))/Phenyl C61 butyric acid methyl-ester synonym(PCBM), as well as the interface of compact CH_(3) NH_(3) PbI_(3)(C-MAPbI_(3))/PCBM by transient absorption spectroscopy. By comparing the carrier recombination dynamics of N-MAPbI_(3), N-MAPbI_(3)/PCBM,C-MAPbI_(3), and C-MAPbI_(3)/PCBM from picosecond(ps) to hundred nanosecond(ns) time scale, it is demonstrated that electron transfer at N-MAPbI_(3)/PCBM interface is less efficient than that at C-MAPbI_(3)/PCBM interface. In addition, electron transfer efficiency at C-MAPbI_(3)/PCBM interface was found to be excitation density-dependent, and it reduces with photo-generation carrier concentration increasing in a range from 1.0 × 1018 cm^(-3)–4.0 × 1018 cm^(-3). Hot electron transfer,which leads to acceleration of electron transfer between the interfaces, was also visualized as carrier concentration increases from 1.0 × 10^(18) cm^(-3)–2.2 × 10^(18) cm^(-3).展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 21503066 and 61904048)the Fundamental Research Project from Shenzhen Science and Technology Innovation Committee (Grant No. JCYJ20180302174021198)+2 种基金the Natural Science Foundation of Hebei ProvinceChina(Grant No. F2017201136)the Foundation of Hebei Educational Committee (Grant No. ZC2016003)。
文摘One-dimensional nanowire is an important candidate for lead-halide perovskite-based photonic detectors and solar cells. Its surface population, diameter, and growth direction, etc., are critical for device performance. In this research,we carried out a detailed study on electron transfer process at the interface of nanowire CH_(3) NH_(3) PbI_(3)(N-MAPbI_(3))/Phenyl C61 butyric acid methyl-ester synonym(PCBM), as well as the interface of compact CH_(3) NH_(3) PbI_(3)(C-MAPbI_(3))/PCBM by transient absorption spectroscopy. By comparing the carrier recombination dynamics of N-MAPbI_(3), N-MAPbI_(3)/PCBM,C-MAPbI_(3), and C-MAPbI_(3)/PCBM from picosecond(ps) to hundred nanosecond(ns) time scale, it is demonstrated that electron transfer at N-MAPbI_(3)/PCBM interface is less efficient than that at C-MAPbI_(3)/PCBM interface. In addition, electron transfer efficiency at C-MAPbI_(3)/PCBM interface was found to be excitation density-dependent, and it reduces with photo-generation carrier concentration increasing in a range from 1.0 × 1018 cm^(-3)–4.0 × 1018 cm^(-3). Hot electron transfer,which leads to acceleration of electron transfer between the interfaces, was also visualized as carrier concentration increases from 1.0 × 10^(18) cm^(-3)–2.2 × 10^(18) cm^(-3).