期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Large magnetic moment at sheared ends of single-walled carbon nanotubes 被引量:1
1
作者 Jian Zhang Ya Deng +12 位作者 Ting-Ting Hao Xiao Hu Ya-Yun Liu Zhi-Sheng Peng Xian-Nian Chi Pei Wu Si-Yu Liu Zhong Zhang Jun-Jie Li Gong-Tang Wang wei-guo chu Chang-Zhi Gu Lian-Feng Sun 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第12期510-516,共7页
In this work we report that after single-walled carbon nanotubes(SWNTs) are sheared with a pair of titanium scissors,the magnetization becomes larger than that of the corresponding pristine ones. The magnetization inc... In this work we report that after single-walled carbon nanotubes(SWNTs) are sheared with a pair of titanium scissors,the magnetization becomes larger than that of the corresponding pristine ones. The magnetization increases proportionally with the number of SWNTs with sheared ends, suggesting that there exist magnetic moments at the sheared ends of SWNTs.By using the coefficient of this linear relation, the average magnetic moment is estimated to be 41.5 ± 9.8 μB(Bohr magneton) per carbon atom in the edge state at temperature of 300.0 K, suggesting that ultrahigh magnetic fields can be produced. The dangling sigma and pi bonds of the carbon atoms at sheared ends play important roles in determining the unexpectedly high magnetic moments, which may have great potential applications. 展开更多
关键词 carbon nanotubes SHEAR open ends magnetic moments
下载PDF
Highly sensitive and stable SERS probes of alternately deposited Ag and Au layers on 3D SiO2 nanogrids for detection of trace mercury ions 被引量:1
2
作者 Yi Tian Han-Fu Wang +6 位作者 Lan-Qin Yan Xian-Feng Zhang Attia Falak Pei-Pei Chen Feng-Liang Dong Lian-Feng Sun wei-guo chu 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第7期497-506,共10页
The hazard of Hg ion pollution triggers the motivation to explore a fast, sensitive, and reliable detection method. Here, we design and fabricate novel 36-nm-thick Ag-Au composite layers alternately deposited on three... The hazard of Hg ion pollution triggers the motivation to explore a fast, sensitive, and reliable detection method. Here, we design and fabricate novel 36-nm-thick Ag-Au composite layers alternately deposited on three-dimensional (3D) periodic SiO2 nanogrids as surface-enhanced Raman scattering (SERS) probes. The SERS effects of the probes depend mainly on the positions and intensities of their localized surface plasmon resonance (LSPR) peaks, which is confirmed by the absorption spectra from finite-difference time-domain (FDTD) calculations. By optimizing the structure and material to maximize the intrinsic electric field enhancement based on the design method of 3D periodic SERS probes proposed, high performance of the Ag-Au/SiO2 nanogrid probes is achieved with the stability further enhanced by annealing. The optimized probes show the outstanding stability with only 4.0% SERS intensity change during 10-day storage, the excellent detection uniformity of 5.78% (RSD), the detection limit of 5.0 × 10-12 M (1 ppt), and superior selectivity for Hg ions. The present study renders it possible to realize the rapid and reliable detection of trace heavy metal ions by developing high- performance 3D periodic structure SERS probes by designing novel 3D structure and optimizing plasmonic material. 展开更多
关键词 surface-enhanced Raman scattering Ag-Au composite layer nanostructure design trace Hg ions detection
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部