The greenhouse effect and global warming are serious problems because the increasing global demand for fossil fuels has led to a rapid rise in greenhouse gas exhaust emissions in the atmosphere and disruptive changes ...The greenhouse effect and global warming are serious problems because the increasing global demand for fossil fuels has led to a rapid rise in greenhouse gas exhaust emissions in the atmosphere and disruptive changes in climate. As a major contributor, CO2 has attracted much attention from scientists, who have attempted to convert it into useful products by electrochemical or photoelectrochemical reduction methods. Facile design of efficient but inexpensive and abundant catalysts to convert CO2 into fuels or valuable chemical products is essential for materials chemistry and catalysis in addressing global climate change as well as the energy crisis. Herein, we show that two-dimensional fewlayer graphitic carbon nitride (g-C3N4) can function as an efficient metal-free electrocatalyst for selective reduction of CO2 to CO at low overpotentials with a high Faradaic efficiency of - 80%. The polarized surface of ultrathin g-C3N4 layers (thickness: -1 nm), with a more reductive conduction band, yields excellent electrochemical activity for CO2 reduction.展开更多
基金This work was supported by National Natural Science Foundation of China (Nos. 21331004, 21673140, and 21671134), Innovation Program of Shanghai Science and Technology Committee (No. 16JC1401600), Shanghai Eastern Scholar Program, Shanghai Rising-Star Program (No. 16QA1402100) and SJTU-MPI partner group.
文摘The greenhouse effect and global warming are serious problems because the increasing global demand for fossil fuels has led to a rapid rise in greenhouse gas exhaust emissions in the atmosphere and disruptive changes in climate. As a major contributor, CO2 has attracted much attention from scientists, who have attempted to convert it into useful products by electrochemical or photoelectrochemical reduction methods. Facile design of efficient but inexpensive and abundant catalysts to convert CO2 into fuels or valuable chemical products is essential for materials chemistry and catalysis in addressing global climate change as well as the energy crisis. Herein, we show that two-dimensional fewlayer graphitic carbon nitride (g-C3N4) can function as an efficient metal-free electrocatalyst for selective reduction of CO2 to CO at low overpotentials with a high Faradaic efficiency of - 80%. The polarized surface of ultrathin g-C3N4 layers (thickness: -1 nm), with a more reductive conduction band, yields excellent electrochemical activity for CO2 reduction.