期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
Role of micro-Ca/In alloying in tailoring the microstructural characteristics and discharge performance of dilute Mg-Bi-Sn-based alloys as anodes for Mg-air batteries
1
作者 Fei-er Shangguan wei-li cheng +6 位作者 Yu-hang Chen Ze-qin Cui Hui Yu Hong-xia Wang Li-fei Wang Hang Li Hua Hou 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期251-266,共16页
The influence of micro-Ca/In alloying on the microstructural charac teristics,electrochemical behaviors and discharge properties of extruded dilute Mg-0.5Bi-0.5Sn-based(wt.%)alloys as anodes for Mg-air batteries are e... The influence of micro-Ca/In alloying on the microstructural charac teristics,electrochemical behaviors and discharge properties of extruded dilute Mg-0.5Bi-0.5Sn-based(wt.%)alloys as anodes for Mg-air batteries are evaluated.The grain size and texture intensity of the Mg-Bi-Sn-based alloys are significantly decreased after the Ca/In alloying,particularly for the In-containing alloy.Note that,in addition to nanoscale Mg_(3)Bi_(2)phase,a new microscale Mg_(2)Bi_(2)Ca phase forms in the Ca-containing alloy.The electrochemical test results demonstrate that Ca/In micro-alloying can enhance the electrochemical activity.Using In to alloy the Mg-Bi-Sn-based alloy is effective in restricting the cathodic hydrogen evolution(CHE)kinetics,leading to a low self-corrosion rate,while severe CHE occurred after Ca alloying.The micro-alloying of Ca/In to Mg-Bi-Sn-based alloy strongly deteriorates the compactness of discharge products film and mitigates the"chunk effect"(CE),hence the cell voltage,anodic efficiency as well as discharge capacity are greatly improved.The In-containing alloy exhibits outstanding discharge performance under the combined effect of the modified microstructure and discharge products,thus making it a potential anode material for primary Mg-air battery. 展开更多
关键词 Mg-air batteries Mg-Bi-Sn based alloys Electrochemical behaviors Discharge properties
下载PDF
两步升温热轧工艺对AZ31镁合金薄板各向异性及成形性能影响 被引量:2
2
作者 王利飞 潘晓锾 +6 位作者 朱星晓 邢镔 张华 卢立伟 王红霞 程伟丽 Maurizio VEDANI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2023年第4期1066-1085,共20页
采用两步梯度升温轧制工艺对AZ31镁合金板材进行轧制,探究轧制过程对镁合金板材显微组织织演化、各向异性及成形性能的影响。第I步轧制在300℃开展,其每道次压下量为15%;第II步轧制在550℃进行,其每道次压下量为40%。经过共4道次轧制后... 采用两步梯度升温轧制工艺对AZ31镁合金板材进行轧制,探究轧制过程对镁合金板材显微组织织演化、各向异性及成形性能的影响。第I步轧制在300℃开展,其每道次压下量为15%;第II步轧制在550℃进行,其每道次压下量为40%。经过共4道次轧制后,最终获得厚度为1 mm的镁合金薄板。结果显示,第I步低温轧制过程不更换轧制方向时,试样中生成大量剪切带;而更换轧制方向时,组织内部主要为孪晶和再结晶晶粒。随着II步轧制温度的升高,由于动态再结晶急剧激发,剪切带数量及尺寸逐渐减小,晶粒明显细化。根据IGMA分析得出,非基面滑移,特别是棱柱面滑移活动增强。轧制退火后的AZ31镁合金薄板的力学性能得到提高,各向异性减小,冲压成形性能得到明显改善。 展开更多
关键词 镁合金板材 两步升温热轧 非基面滑移 剪切带 织构 成形性能
下载PDF
挤压态低合金化Mg-0.5Bi-0.5Y-0.2Zn合金的腐蚀行为及力学性能 被引量:1
3
作者 李峰 程伟丽 +5 位作者 余晖 王红霞 牛晓峰 王利飞 李航 侯华 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2023年第3期743-754,共12页
研发一种新型低合金化Mg-Bi-Y-Zn合金系,该合金系在673 K的挤压温度下成功成型。通过扫描电子显微镜(SEM)、电子背散射衍射(EBSD)、电化学试验和拉伸试验研究挤压态合金的腐蚀行为和拉伸性能。挤压后,合金表现出几乎完全的动态再结晶组... 研发一种新型低合金化Mg-Bi-Y-Zn合金系,该合金系在673 K的挤压温度下成功成型。通过扫描电子显微镜(SEM)、电子背散射衍射(EBSD)、电化学试验和拉伸试验研究挤压态合金的腐蚀行为和拉伸性能。挤压后,合金表现出几乎完全的动态再结晶组织和典型的挤压织构,在晶粒内可以观察到一些亚微米级析出相。在SBF溶液中,合金的腐蚀模式由最初的点蚀为主转变为中间过程的丝状腐蚀为主;最后经长时间浸泡后,腐蚀模式转变为丝状腐蚀和局部晶粒脱落。挤压态Mg-0.5Bi-0.5Y-0.2Zn合金的屈服强度为237 MPa,极限抗拉强度为304 MPa,伸长率为31%,平均腐蚀速率为0.14 mm/a。由此可见,该合金表现出良好的拉伸性能和耐腐蚀性能匹配度,这主要归因于其均匀的晶粒结构和亚微米级析出相。因此本文所研发的Mg-0.5Bi-0.5Y-0.2Zn合金具有在生物医药领域的广阔应用前景。 展开更多
关键词 Mg-Bi基合金 挤压 腐蚀行为 力学性能
下载PDF
Tailoring the microstructural characteristic and improving the corrosion resistance of extruded dilute Mg-0.5Bi-0.5Sn alloy by microalloying with Mn 被引量:9
4
作者 Yang Liu wei-li cheng +4 位作者 Xiong-jie Gu Yan-hui Liu Zeqin Cui Lifei Wang Hong-xia Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第5期1673-1685,共13页
Mg-0.5Bi-0.5Sn alloys with and without microalloying with 0.5 wt%Mn were subjected to extrusion,and the effect of Mn microalloying on the microstructural characteristic and corrosion behavior of the extruded alloys wa... Mg-0.5Bi-0.5Sn alloys with and without microalloying with 0.5 wt%Mn were subjected to extrusion,and the effect of Mn microalloying on the microstructural characteristic and corrosion behavior of the extruded alloys was investigated.The results indicated that the average grain size and the density of dislocations decreased,and a new Mg_(26.67)Mn_(65.47)Fe_(7.86)second phase as well as grain boundary segregation of Sn atoms could be observed in certain micro-regions of the extruded dilute Mg-0.5Bi-0.5Sn-0.5 Mn alloy.The tailoring of microstructure resulted in the significant enhancement in corrosion resistance(R_(p)increased from 1095.91Ωcm^(2)to 5008.79Ωcm^(2)).In addition,grain boundary segregation resulted in intergranular corrosion and led to the dissolution of Sn atoms.Hence,the dissolution rate of the matrix in Mg-0.5Bi-0.5Sn-0.5Mn alloy could be inhibited by the corrosion product film containing an intermediate product(SnO_(2)). 展开更多
关键词 Mg alloy Extrusion MICROALLOYING Microstructure Corrosion behavior
下载PDF
Modification and refinement effects of Sb and Sr on Mg_(17)Al_(12) and Mg_2Si phases in Mg-12Al-0.7Si alloy 被引量:5
5
作者 Zhi-wen Wang Hong-xia Wang +3 位作者 Jia-lin Gong Ming Li wei-li cheng Wei Liang 《China Foundry》 SCIE 2016年第5期310-315,共6页
The effects of Sb and Sr on the modification and refinement of Mg17Al12 and Mg2Si phases in Mg- 12Al-0.7Si alloy were investigated and compared. The microstructure and mechanical properties of Mg-12Al0.7Si alloy and i... The effects of Sb and Sr on the modification and refinement of Mg17Al12 and Mg2Si phases in Mg- 12Al-0.7Si alloy were investigated and compared. The microstructure and mechanical properties of Mg-12Al0.7Si alloy and its modification mechanism by Sb and Sr were investigated using a scanning electron microscope (SEM), an energy dispersive spectrometer (EDS), X-ray diffraction (XRD) and differential thermal analysis (DTA). The results indicate that by adding 0.5wt.% Sb to the Mg-12Al-0.7Si alloy, the Mg17Al12 phase was refined and broken into some discontinuous island structures. However, some network Mg17Al12 phases still can be detected in Mg-12Al-0.7Si-0.09Sr alloy. Therefore, Sb performs better in modification and refinement of Mg17Al12 phase than does Sr. Small amounts of fine polygonal shaped Mg2Si phases were found in Mg-12AI-0.7Si-0.5Sb alloy, while the morphology of Mg2Si phases in Mg-12Al-0.7Si-0.09Sr alloy changed from the coarse Chinese script shapes to fine granule and irregular polygonal shapes, indicating that the effects of modification and refinement on Mg2Si phase are more significant by adding 0.09wt.% Sr than 0.5wt.% Sb. The ultimate tensile strengths of the Sb and Sr modified Mg-12Al-0.7Si alloys were considerably increased both at room temperature and at 200 ℃. 展开更多
关键词 magnesium alloy SB SR Mg17Al12 phase Mg2Si phase
下载PDF
Microstructure evolution and mechanical properties of Mg-9Al-1Si-1SiC composites processed by multi-pass equal-channel angular pressing at various temperatures 被引量:6
6
作者 Xiang-peng Zhang Hong-xia Wang +4 位作者 Li-ping Bian Shao-xiong Zhang Yong-peng Zhuang wei-li cheng Wei Liang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第12期1966-1975,共10页
In this study,Mg-9 Al-1 Si-1 SiC(wt%)composites were processed by multi-pass equal-channel angular pressing(ECAP)at various temperatures,and their microstructure evolution and strengthening mechanism were explored.Res... In this study,Mg-9 Al-1 Si-1 SiC(wt%)composites were processed by multi-pass equal-channel angular pressing(ECAP)at various temperatures,and their microstructure evolution and strengthening mechanism were explored.Results showed that the as-cast microstructure was composed of anα-Mg matrix,discontinuous Mg17Al12 phase,and Chinese script-shaped Mg2Si phase.After solution treatment,almost all of the Mg17Al12 phases were dissolved into the matrix,whereas the Mg2Si phases were not.The subsequent multi-pass ECAP at different temperatures promoted the dynamic recrystallization and uniform distribution of the Mg17Al12 precipitates when compared with the multipass ECAP at a constant temperature.A large number of precipitates can effectively improve the nucleation ratio of recrystallization through a particle-stimulated nucleation mechanism.In addition,the SiC nanoparticles were mainly distributed at grain boundaries,which effectively prevented dislocation movement.The excellent comprehensive mechanical properties can be attributed to grain boundary strengthening and Orowan strengthening. 展开更多
关键词 strengthening RECRYSTALLIZATION microstructure
下载PDF
Tailoring the microstructural characteristics and enhancing creep properties of as-cast Mg-5Bi-5Sn alloy through Mn addition 被引量:1
7
作者 Yi-hao Luo wei-li cheng +6 位作者 Hui Yu Hong-xia Wang Xiao-feng Niu Li-fei Wang Hang Li Zhi-yong You Hua Hou 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第9期3350-3361,共12页
The creep properties, microstructural characteristics and creep mechanisms of as-cast Mg-5Bi-5Sn(BT55) alloy without and with Mn(BTM550) addition were investigated via creep at 423, 448, and 473 K as well as stresses ... The creep properties, microstructural characteristics and creep mechanisms of as-cast Mg-5Bi-5Sn(BT55) alloy without and with Mn(BTM550) addition were investigated via creep at 423, 448, and 473 K as well as stresses of 30, 50 and 75 MPa. The results indicate that adding Mn can result in the formation of primary and the dynamic precipitated α-Mn phases. In addition, the morphology of the precipitated Mg_(3)Bi_(2) phase and the orientation relationship between Mg_(2)Sn precipitates and α-Mg can be effectively modified. Tailoring the microstructural characteristics is responsible for the improved creep performance of BTM550 alloy. The dominant creep mechanisms in BT55 and BTM550 alloys are dislocation cross-slip and climb, respectively. Furthermore, twinning and pyramidal slip play an assisting part in both alloys during creep process. 展开更多
关键词 Mg alloy Microstructural characteristics Creep properties PRECIPITATES DISLOCATION
下载PDF
Compressive deformation behavior of an indirect-extruded Mg-8Sn-1Al-1Zn alloy 被引量:1
8
作者 wei-li cheng Zhong-ping Que +4 位作者 Jin-shan Zhang Chun-xiang Xu Wei Liang Bong Sun You Sung Soo Park 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第1期49-56,共8页
The medium and warm deformation behaviors of an indirect-extruded Mg-8Sn-IAI-IZn alloy were investigated by compression tests at temperatures between 298 and 523 K and strain rates of 0.001-10 s-1. It was found that t... The medium and warm deformation behaviors of an indirect-extruded Mg-8Sn-IAI-IZn alloy were investigated by compression tests at temperatures between 298 and 523 K and strain rates of 0.001-10 s-1. It was found that the twinning-slip transition temperature was strain rate dependent, and all the true stress-true strain curves could be divided into two groups: concave and convex curves. Associated microstructural investigations indicated that the dynamic recrystallization (DRX) be- havior of the alloy varied with deformation conditions. At high strain rate and low temperature, dynamically recrystallized grains preferentially nucleated and developed in the twinned regions, indicating that twinning-induced DRX was dominant. While, at low strain rate, DRX developed extensively at grain boundaries and twins, and the process of twinning contributed to both oriented nucleation and selective growth. For the studied alloy, cracks mainly initiated from the shear band and twinning lamellar over the ranges of temperature and strain rate currently applied. 展开更多
关键词 magnesium alloys compression testing dynamic recrystallization microstructure
下载PDF
Improved tensile properties of Mg-8Sn-1Zn alloy induced by minor Ti addition 被引量:1
9
作者 wei-li cheng Quan-wei Tian +2 位作者 Rui Huo Liang Tian Shou-fan Rong 《China Foundry》 SCIE 2016年第3期151-158,共8页
In this study, the influence of minor titanium(Ti) addition on the microstructure and tensile properties of Mg-8Sn-1Zn based alloys were investigated by means of optical microscopy, X-ray diffraction, scanning electro... In this study, the influence of minor titanium(Ti) addition on the microstructure and tensile properties of Mg-8Sn-1Zn based alloys were investigated by means of optical microscopy, X-ray diffraction, scanning electron microscopy, energy dispersive spectrometry, and tensile tests. The results showed that Ti can decrease the secondary dendrite arm spacing(SDAS). The tensile strength of the Mg-8Sn-1Zn-Ti alloys is initially increased by increasing the Ti content up to 0.09 wt.%, but subsequently decreased for further increase of Ti content. The improved tensile properties are attributed to the decreased SDAS and refi ned Mg_2Sn phases, as well as the increased fraction of tin(Sn) segregated regions. The tensile fracture surface of the studied alloys shows mixed characteristics of cleavage and quasi-cleavage fracture. Adding Ti does not significantly change the fracture mode of the studied alloys. 展开更多
关键词 Mg-8Sn-1Zn alloy tensile properties TITANIUM tin segregation
下载PDF
Corrosion behavior of as-cast binary Mg-Bi al oys in Hank's solution 被引量:1
10
作者 wei-li cheng Rui Huo +2 位作者 Quan-wei Tian Liang Tian Shou-fan Rong 《China Foundry》 SCIE 2015年第6期425-430,共6页
Biodegradable Mg-xB i(x = 3, 6 and 9wt.%) alloys were fabricated by ingot casting, and the change of corrosion behavior of the alloys in the Hank's solution was analyzed with respect to the microstructure using op... Biodegradable Mg-xB i(x = 3, 6 and 9wt.%) alloys were fabricated by ingot casting, and the change of corrosion behavior of the alloys in the Hank's solution was analyzed with respect to the microstructure using optical micrograph(OM), X-ray diffraction(XRD), scanning electron microscope(SEM) equipped with an energy dispersive X-ray spectrometer(EDS), electrochemical and immersion tests. The results show that the microstructures of the as-cast Mg-Bi alloys mainly consisted of dendritic α-Mg grains and Mg3Bi2 phase in common, with the secondary dendrite arm spacing(SDAS) decreasing significantly from 41.2 μm to 25.4 μm and the fraction of Mg3Bi2 increasing from 3.1% to 10.7%. Furthermore, the corrosion rate increasing from 1.32 mm·a-1 to 8.07 mm·a-1 as the Bi content was increased from 3wt.% to 9wt.%. The reduced corrosion resistance was mainly ascribed to the increasing fraction of the second phase particles, which bring positive effects on the development of pitting. 展开更多
关键词 MAGNESIUM microstructure electrochemical impedance spectroscopy(EIS) pitting corrosion
下载PDF
Effects ofslip mode on microstructure evolution and compressive flow behavior of extruded dilute Mg−0.5Bi−0.5Sn−0.5Mn alloy
11
作者 Zhi-yong YOU wei-li cheng +6 位作者 Guo-lei LIU Jian LI Li-fei WANG Hui YU Hong-xia WANG Ze-qin CUI Jin-hui WANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS 2024年第11期3599-3614,共16页
The influence of the slip mode on the microstructure evolution and compressive flow behavior at different strains in an extruded dilute Mg−0.5Bi−0.5Sn−0.5Mn alloy was analyzed through electron backscatter diffraction,... The influence of the slip mode on the microstructure evolution and compressive flow behavior at different strains in an extruded dilute Mg−0.5Bi−0.5Sn−0.5Mn alloy was analyzed through electron backscatter diffraction,X-ray diffraction,transmission electron microscopy,and hot compression tests.The results showed that at a low strain of 0.05,the basal<a>,pyramidal<a>and<c+a>slip modes were simultaneously activated.Nevertheless,at the middle stage of deformation(strain of 0.1,0.2 and 0.5),the<a>slip mode was difficult to be activated and<c+a>slip mode became dominant.The deformation process between strains of 0.2 and 0.5 was primarily characterized by the softening effect resulting from the simultaneous occurrence of continuous dynamic recrystallization and discontinuous dynamic recrystallization.Ultimately,at strain of 0.8,a dynamic equilibrium was established,with the flow stress remaining constant due to the interplay between the dynamic softening brought about by discontinuous dynamic recrystallization and the work-hardening effect induced by the activation of the basal<a>slip mode. 展开更多
关键词 dilute Mg−Bi−Sn−Mn alloy slip mode hot compression flow behavior dynamic recrystallization
下载PDF
Tailoring the microstructure and improving the discharge properties of dilute Mg-Sn-Mn-Ca alloy as anode for Mg-air battery through homogenization prior to extrusion 被引量:6
12
作者 Xiong-jie Gu wei-li cheng +6 位作者 Shi-ming cheng Yan-hui Liu Zhi-feng Wang Hui Yu Ze-qin Cui Li-fei Wang Hong-xia Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第1期77-89,共13页
Mg-0.5Sn-0.5Mn-0.5Ca(wt.%) alloys with different microstructures are designed through casting and extrusion with and without homogenization treatment prior to extrusion(HPE).The influence of HPE treatment on the micro... Mg-0.5Sn-0.5Mn-0.5Ca(wt.%) alloys with different microstructures are designed through casting and extrusion with and without homogenization treatment prior to extrusion(HPE).The influence of HPE treatment on the microstructural characteristics and resultant discharge properties of Mg-Sn-Mn-Ca alloy in extruded condition as anode for Mg-air battery was investigated.HPE treatment exerts a prominent effect on the grain structure and orientation,distribution of the second phase particles as well as the dislocation density of the extruded alloy.The HPE alloy exhibits a distinctly high cell voltage together with specific energy compared with that of Non-HPE one.Intermittent discharge tests confirm that the HPE alloy possesses a more excellent discharge activity and more stable discharge process than the NonHPE one.All results demonstrate that the HPE alloy is an attractive anode material for Mg-air battery with long-term storage and under intermittent discharge. 展开更多
关键词 Mg-air battery Homogenization prior to extrusion MICROSTRUCTURE Discharge property Intermittent discharge
原文传递
Influence of Initial Microstructure on the Strengthening Effect of Extruded Mg–8Sn–4Zn–2Al Alloys 被引量:3
13
作者 Yang Bai wei-li cheng +3 位作者 Shi-Chao Ma Jun Zhang Chen Guo Yao Zhang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2018年第5期487-495,共9页
The Mg–8Sn–4Zn–2Al(TZA842, in wt%) alloys with different initial microstructure(as-cast-AC and homogenization treatment-HT) subjected to hot extrusion. Also, the strengthening responses to AC and HT for the ext... The Mg–8Sn–4Zn–2Al(TZA842, in wt%) alloys with different initial microstructure(as-cast-AC and homogenization treatment-HT) subjected to hot extrusion. Also, the strengthening responses to AC and HT for the extruded TZA842 alloys were reported. The results revealed that the alloy subjected to HT shows finer grain size, more homogenous microstructure and weaker basal texture than those of counterpart subjected to AC. In addition, compared with TZA842-AC alloy, precipitates were finer and uniformly dispersed in TZA842-HT owing to the utilization of HT. Moreover, the TZA842-HT alloy showed higher yield strength of 200 MPa, ultimate tensile strength of 290 MPa and elongation(EL) of17.9% than those of TZA842-AC, which was mainly attributed to the combined effects of grain boundary strengthening,precipitation strengthening, solid solution strengthening and weak texture. Strengthening mechanism for both alloys was discussed in detail. 展开更多
关键词 Mg-Sn alloy EXTRUSION Microstrueture Tensile property Strengthening mechanism
原文传递
Microstructure,fracture behavior,in vitro corrosion resistance,and cytotoxicity of Zn-Mg/Mg-Zn-HAp laminated composites produced by spark plasma sintering 被引量:2
14
作者 Ya-Kai Zhang Ze-Qin Cui +2 位作者 Dian-Qing Gong Wen-Xian Wang wei-li cheng 《Rare Metals》 SCIE EI CAS CSCD 2021年第4期939-951,共13页
Ideal biodegradable materials exhibit suitable degradation rates and sufficient mechanical properties for their specific application.With these parameters in mind,Zn-Mg/Mg-Zn-hydroxyapatite(HAp) laminated composites w... Ideal biodegradable materials exhibit suitable degradation rates and sufficient mechanical properties for their specific application.With these parameters in mind,Zn-Mg/Mg-Zn-hydroxyapatite(HAp) laminated composites were designed and fabricated by spark plasma sintering.This paper describes the structure,mechanical properties,in vitro corrosion resistance,and cytotoxicity of the Zn-Mg/Mg-Zn-HAp laminated composites.The compressive strength and elastic moduli of the laminated composites matched that of cortical bone and could effectively reduce the stress shielding effect as an implant with good biomechanical compatibility.Analysis of the fracture path and morphology after fracture toughness tests indicated that the Zn-Mg/Mg-Zn-HAp laminated composites exhibited significant capacity to prevent crack propagation,improving the fracture toughness.In vitro degradation experiments showed that the design of the laminated structure can provide a gradient degradation rate for the material.Furthermore,the laminated composites exhibited excellent biocompatibility and are promising candidates for orthopedic implants. 展开更多
关键词 Laminated composites Zn-Mg composites Spark plasma sintering MICROSTRUCTURE Fracture behavior In vitro degradation CYTOTOXICITY
原文传递
Unveiling the twinning and dynamic recrystallization behavior and the resultant texture evolution in the extruded Mg-Bi binary alloys during hot compression 被引量:2
15
作者 Yu-qin Zhang wei-li cheng +4 位作者 Hui Yu Hong-xia Wang Xiao-feng Niu Li-fei Wang Hang Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第10期274-285,共12页
The twinning behavior, dynamic recrystallization(DRX) mechanism and the resultant texture evolution of the extruded Mg-xBi(x=0.5 wt.%, 2.0 wt.%) alloys were systematically investigated during hot compression at the st... The twinning behavior, dynamic recrystallization(DRX) mechanism and the resultant texture evolution of the extruded Mg-xBi(x=0.5 wt.%, 2.0 wt.%) alloys were systematically investigated during hot compression at the strain rate of 10 s^(-1) and temperature of 200℃. The results indicate that the types and intensities of the texture are greatly dependent on the twining behavior and DRX mechanism. At the initial stage, the evolution of texture is mainly domination by the formation and variation of {1012} extension twins, which is benefcial to the compression direction(CD)-tilted basal texture. With an increase in the strain, the texture evolution is more greatly regulated by the DRX mechanism. Besides, the pyramidal<c + a> slip and basal slip are activated during the compression process, resulting in the Schmid factors(SF) of pyramidal slip remain at ~0.4 and the average SFs for basal slip increase from 0.2 to0.34 as the strain increase. These fndings provide a new insight into controlling the texture of wrought Mg-Bi-based alloys during hot deformation processing. 展开更多
关键词 Wrought Mg-Bi alloys Hot deformation TWINNING Dynamic recrystallization Dislocation slip Texture
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部