The in situ(TiC+TiB)/TA15 composites with different volume percentages of reinforcement(10%,15%,20%and 25%)were prepared by water-cooled copper crucible vacuum suspension melting technology.The structures and composit...The in situ(TiC+TiB)/TA15 composites with different volume percentages of reinforcement(10%,15%,20%and 25%)were prepared by water-cooled copper crucible vacuum suspension melting technology.The structures and compositions of the TA15 alloy and its composites were analyzed by XRD and EDS,and their electrochemical corrosion behaviors in the 3.5%NaCl solution were studied.Corrosion wear testing was conducted using a reciprocating ball-on-disc wear tester under a 10 N load.Results show that the in situ fibrous TiB phase and the granular TiC phase are uniformly distributed on the composite matrix.The microhardness can reach up to 531 HV as 25vol.%TiC+TiB reinforcement is added.Compared with the TA15 alloy,the volume wear rate decreases from(2.21±0.07)×10^(-4)to(1.75±0.07)×10^(-4)mm^(3)·N^(-1)·m^(-1)by adding 15vol.%TiC+TiB reinforcement,and the wear mechanism is adhesive wear.When the volume percentage of the reinforcement phase reaches 25%,the volume wear rate increases from(1.75±0.07)×10^(-4)to(2.41±0.07)×10^(-4)mm^(3)·N^(-1)·m^(-1),and the wear mechanism changes into abrasive wear.The volume loss resulted by the interaction between corrosion and wear accounts for more than 27%of the total wear volume.The volume loss due to wear-induced corrosion changes from 1.94%to 4.06%with different additions of reinforcement.The volume loss caused by corrosion-induced wear initially increases from 24.08%to 26.90%as the reinforcement increases from 0 to 15%due to the increase of corrosion potential,and then decreases from 26.90%to 25.68%as the reinforcement increases from 15%to 25%due to the peeling of TiC phase.展开更多
Thermal and induced flow velocity characteristics of radio frequency(RF) surface dielectric barrier discharge(SDBD)plasma actuation are experimentally investigated in this paper. The spatial and temporal distribut...Thermal and induced flow velocity characteristics of radio frequency(RF) surface dielectric barrier discharge(SDBD)plasma actuation are experimentally investigated in this paper. The spatial and temporal distributions of the dielectric surface temperature are measured with the infrared thermography at atmospheric pressure. In the spanwise direction, the highest dielectric surface temperature is acquired at the center of the high voltage electrode, while it reduces gradually along the chordwise direction. The maximum temperature of the dielectric surface raises rapidly once discharge begins.After several seconds(typically 100 s), the temperature reaches equilibrium among the actuator's surface, plasma, and surrounding air. The maximum dielectric surface temperature is higher than that powered by an AC power supply in dozens of k Hz. Influences of the duty cycle and the input frequency on the thermal characteristics are analyzed. When the duty cycle increases, the maximum dielectric surface temperature increases linearly. However, the maximum dielectric surface temperature increases nonlinearly when the input frequency varies from 0.47 MHz to 1.61 MHz. The induced flow velocity of the RF SDBD actuator is 0.25 m/s.展开更多
Outer hair cells (OHCs) damage is a general phenomenon in clinical disorders such as noise-induced hearing loss and drug-induced hearing loss.In order to elucidate the mechanism underlying these disorders,OHCs-its dis...Outer hair cells (OHCs) damage is a general phenomenon in clinical disorders such as noise-induced hearing loss and drug-induced hearing loss.In order to elucidate the mechanism underlying these disorders,OHCs-its diseased region needs to be deeply investigated.However,OHCs array on the basilar membrane which contains massive cells with different types.Therefore,to isolate OHCs from this huge population is significant for revealing its pathological and molecular changes during disease processing.In the present study,we tried to isolate OHCs from the commonly used animal model-Sprague-Dawley (SD) rats.By separating outer hair cells from SD rats with different day ages,we found that 9 days after birth was a suitable time for the separation of the OHCs.At this time,the number of OHCs isolated from rats was large,and the cell morphology was typical of cylindrical shape.OHCs isolated using this method are histologically suitable and quantitatively adequate for molecular biological and electrophysiological analyses.展开更多
基金This work was financially supported by the National Key Research and Development Program of China(Grant Nos.2020YFB2008305,2020YFB2008303)the Natural Science Foundation of Shenyang City(Grant No.22315605).
文摘The in situ(TiC+TiB)/TA15 composites with different volume percentages of reinforcement(10%,15%,20%and 25%)were prepared by water-cooled copper crucible vacuum suspension melting technology.The structures and compositions of the TA15 alloy and its composites were analyzed by XRD and EDS,and their electrochemical corrosion behaviors in the 3.5%NaCl solution were studied.Corrosion wear testing was conducted using a reciprocating ball-on-disc wear tester under a 10 N load.Results show that the in situ fibrous TiB phase and the granular TiC phase are uniformly distributed on the composite matrix.The microhardness can reach up to 531 HV as 25vol.%TiC+TiB reinforcement is added.Compared with the TA15 alloy,the volume wear rate decreases from(2.21±0.07)×10^(-4)to(1.75±0.07)×10^(-4)mm^(3)·N^(-1)·m^(-1)by adding 15vol.%TiC+TiB reinforcement,and the wear mechanism is adhesive wear.When the volume percentage of the reinforcement phase reaches 25%,the volume wear rate increases from(1.75±0.07)×10^(-4)to(2.41±0.07)×10^(-4)mm^(3)·N^(-1)·m^(-1),and the wear mechanism changes into abrasive wear.The volume loss resulted by the interaction between corrosion and wear accounts for more than 27%of the total wear volume.The volume loss due to wear-induced corrosion changes from 1.94%to 4.06%with different additions of reinforcement.The volume loss caused by corrosion-induced wear initially increases from 24.08%to 26.90%as the reinforcement increases from 0 to 15%due to the increase of corrosion potential,and then decreases from 26.90%to 25.68%as the reinforcement increases from 15%to 25%due to the peeling of TiC phase.
基金supported by the National Natural Science Foundation of China(Grant Nos.11472306,51407197,and 51507187)
文摘Thermal and induced flow velocity characteristics of radio frequency(RF) surface dielectric barrier discharge(SDBD)plasma actuation are experimentally investigated in this paper. The spatial and temporal distributions of the dielectric surface temperature are measured with the infrared thermography at atmospheric pressure. In the spanwise direction, the highest dielectric surface temperature is acquired at the center of the high voltage electrode, while it reduces gradually along the chordwise direction. The maximum temperature of the dielectric surface raises rapidly once discharge begins.After several seconds(typically 100 s), the temperature reaches equilibrium among the actuator's surface, plasma, and surrounding air. The maximum dielectric surface temperature is higher than that powered by an AC power supply in dozens of k Hz. Influences of the duty cycle and the input frequency on the thermal characteristics are analyzed. When the duty cycle increases, the maximum dielectric surface temperature increases linearly. However, the maximum dielectric surface temperature increases nonlinearly when the input frequency varies from 0.47 MHz to 1.61 MHz. The induced flow velocity of the RF SDBD actuator is 0.25 m/s.
基金the National Natural Science Foundation of China(NSFC 81120108008).
文摘Outer hair cells (OHCs) damage is a general phenomenon in clinical disorders such as noise-induced hearing loss and drug-induced hearing loss.In order to elucidate the mechanism underlying these disorders,OHCs-its diseased region needs to be deeply investigated.However,OHCs array on the basilar membrane which contains massive cells with different types.Therefore,to isolate OHCs from this huge population is significant for revealing its pathological and molecular changes during disease processing.In the present study,we tried to isolate OHCs from the commonly used animal model-Sprague-Dawley (SD) rats.By separating outer hair cells from SD rats with different day ages,we found that 9 days after birth was a suitable time for the separation of the OHCs.At this time,the number of OHCs isolated from rats was large,and the cell morphology was typical of cylindrical shape.OHCs isolated using this method are histologically suitable and quantitatively adequate for molecular biological and electrophysiological analyses.