Owing to the unique electronic structure,kagome materials AV_(3)Sb_(5)(A=K,Rb,Cs)provide a fertile platform of quantum phenomena such as the strongly correlated state and topological Dirac band.It is well known that R...Owing to the unique electronic structure,kagome materials AV_(3)Sb_(5)(A=K,Rb,Cs)provide a fertile platform of quantum phenomena such as the strongly correlated state and topological Dirac band.It is well known that RbV_(3)Sb_(5)exhibits a 2×2 unconventional charge density wave(CDW)state at low temperature,and the mechanism is controversial.Here,by using scanning tunneling microscopy/spectroscopy(STM/STS),we successfully manipulated the CDW state in the Sb plane of RbV_(3)Sb_(5),and realized a new3(1/2)×3(1/2)modulation together with the ubiquitous 2×2 period in the CDW state of RbV_(3)Sb_(5).This work provides a new understanding of the collective quantum ground states in the kagome materials.展开更多
Excitons in solid state are bosons generated by electron-hole pairs as the Coulomb screening is sufficiently reduced.The exciton condensation can result in exotic physics such as super-fluidity and insulating state.In...Excitons in solid state are bosons generated by electron-hole pairs as the Coulomb screening is sufficiently reduced.The exciton condensation can result in exotic physics such as super-fluidity and insulating state.In charge density wave(CDW)state,1T-TiSe_(2) is one of the candidates that may host the exciton condensation.However,to envision its excitonic effect is still challenging,particularly at the two-dimensional limit,which is applicable to future devices.Here,we realize the epitaxial 1T-TiSe_(2) bilayer,the two-dimensional limit for its 2×2×2 CDW order,to explore the exciton-associated effect.By means of high-resolution scanning tunneling spectroscopy and quasiparticle interference,we discover an unexpected state residing below the conduction band and right within the CDW gap region.As corroborated by our theoretical analysis,this mysterious phenomenon is in good agreement with the electron-exciton coupling.Our study provides a material platform to explore exciton-based electronics and opto-electronics.展开更多
This study focused on the synergistic effect of alloying elements neodymium(Nd) and dysprosium(Dy) on the ignition-proof performance of AZ91D alloy. The ignition-proof mechanism of AZ91D-3 Nd-x Dy(x = 0.5, 1.0, 1.5, 2...This study focused on the synergistic effect of alloying elements neodymium(Nd) and dysprosium(Dy) on the ignition-proof performance of AZ91D alloy. The ignition-proof mechanism of AZ91D-3 Nd-x Dy(x = 0.5, 1.0, 1.5, 2.0 and 2.5 wt.%) alloy was discussed in depth through ignition-proof testing and microstructure observation. The results showed that the AZ91D-3 Nd-2 Dy alloy exhibited the highest ignition-point of 893 K, increased by 69 K as compared to the AZ91D alloy. The ignition-proof mechanism of Nd and Dy additions lay in three aspects:(1) the formation of denser oxide film consisting of Dy_2O_3 and MgO improves the oxidation resistance of the alloy,(2) the great reduction of the low melting-point phase β-Mg_(17)Al_(12), which leads to the decrease in the oxygen diffusion channels, and(3) the newly formed high melting-point phases(Al_2Nd and Al_2Dy), which block the oxygen diffusion channels and prevent the chemical reaction of Mg and oxygen.展开更多
By using scanning tunneling microscopy,we investigated the electronic evolution of T_(d)-WTe_(2) via in-situ surface alkali K atoms deposition.The T_(d)-WTe_(2) surface is electron doped upon K deposition,and as the K...By using scanning tunneling microscopy,we investigated the electronic evolution of T_(d)-WTe_(2) via in-situ surface alkali K atoms deposition.The T_(d)-WTe_(2) surface is electron doped upon K deposition,and as the K coverage increases,two gaps are sequentially opened near Fermi energy,which probably indicates that two phase transitions concomitantly occur during electron doping.The two gaps both show a dome-like dependence on the K coverage.While the bigger gap shows no prominent dependence on the magnetic field,the smaller one can be well suppressed and thus possibly corresponds to the superconducting transition.This work indicates that T_(d)-WTe_(2) exhibits rich quantum states closely related to the carrier concentration.展开更多
In the present study, closed-cell aluminum foams with different percentages of erbium (Er) element were successfully prepared. The distribution and existence form of erbium (Er) element and its effect on the compr...In the present study, closed-cell aluminum foams with different percentages of erbium (Er) element were successfully prepared. The distribution and existence form of erbium (Er) element and its effect on the compressive properties of the foams were investigated. Results show that Er uniformly distributes in the cell walls in the forms of Al3Er intermetallic compound and AI-Er solid solutions. Compared with commercially pure aluminum foam, Er-containing foams possess higher micro-hardness, compressive strength and energy absorption capacity due to solid solution strengthening and second phase strengthening effects. Additionally, the amount of Er element should be controlled in the range of 0.10wt.%-0.50wt.% in order to obtain a good combination of compressive strength and energy absorption properties.展开更多
Mg and its alloys are the lightest structural metals available and are extremely attractive for applications as lightweight components, particularly in the automobile, electronic, and aerospace industries. The global ...Mg and its alloys are the lightest structural metals available and are extremely attractive for applications as lightweight components, particularly in the automobile, electronic, and aerospace industries. The global market for wrought Mg alloys has steadily expanded over the past decade. And numerous studies have been carried out to meet this increasing demand of high-performance Mg alloys. However, Mg extrusion alloys have had a very limited usage so far. To overcome existing industrial challenges, one desirable approach is the development of low-cost rare earth(RE) free Mg extrusion alloys with superior mechanical properties. This review will introduce the recent research highlights in the extrusion of Mg alloys, specifi cally focusing on low-cost RE-free Mg alloy. The results from both the literature and our previous study are summarized and critically reviewed. Several aspects of RE-free Mg extrusion alloys are described in detail:(1) novel alloying designs including Mg–Al-, Mg–Zn-, Mg–Ca-, Mg–Sn-, and Mg–Bi-based alloys,(2) advanced extrusion techniques, and(3) extrusion-related severe plastic deformation(SPD) processing. Accordingly, considering the large gap in mechanical properties between the current RE-free Mg alloys and high-performance aluminum alloys, new alloy design, processing route control, and recommendations for future research on RE-free Mg extrusion alloys are also proposed. We hope this review will not only off er insightful information regarding the extrusion of RE-free Mg alloys but also inspire the development of new Mg extrusion technologies.展开更多
基金the National Key Research and Development Program of China(Grant No.2021YFA1400403)the National Natural Science Foundation of China(Grant Nos.92165205,11790311,and 11774149)+2 种基金Innovation Program for Quantum Science and Technology(Grant No.2021ZD0302800)the support by the open project of Beijing National Laboratory for Condensed Matter Physics(Grant No.ZBJ2106110017)the Double First-Class Initiative Fund of Shanghai Tech University。
文摘Owing to the unique electronic structure,kagome materials AV_(3)Sb_(5)(A=K,Rb,Cs)provide a fertile platform of quantum phenomena such as the strongly correlated state and topological Dirac band.It is well known that RbV_(3)Sb_(5)exhibits a 2×2 unconventional charge density wave(CDW)state at low temperature,and the mechanism is controversial.Here,by using scanning tunneling microscopy/spectroscopy(STM/STS),we successfully manipulated the CDW state in the Sb plane of RbV_(3)Sb_(5),and realized a new3(1/2)×3(1/2)modulation together with the ubiquitous 2×2 period in the CDW state of RbV_(3)Sb_(5).This work provides a new understanding of the collective quantum ground states in the kagome materials.
基金the National Key Research and Development Program of China(Grant Nos.2021YFA1400403,2018YFA0306800,2019YFA0210004,and 2016YFA0300401)the National Natural Science Foundation of China(Grant Nos.92165205,11774149,11790311,11774154,11674158,and 12074175)Innovation Program for Quantum Science and Technology(Grant No.2021ZD0302800)。
文摘Excitons in solid state are bosons generated by electron-hole pairs as the Coulomb screening is sufficiently reduced.The exciton condensation can result in exotic physics such as super-fluidity and insulating state.In charge density wave(CDW)state,1T-TiSe_(2) is one of the candidates that may host the exciton condensation.However,to envision its excitonic effect is still challenging,particularly at the two-dimensional limit,which is applicable to future devices.Here,we realize the epitaxial 1T-TiSe_(2) bilayer,the two-dimensional limit for its 2×2×2 CDW order,to explore the exciton-associated effect.By means of high-resolution scanning tunneling spectroscopy and quasiparticle interference,we discover an unexpected state residing below the conduction band and right within the CDW gap region.As corroborated by our theoretical analysis,this mysterious phenomenon is in good agreement with the electron-exciton coupling.Our study provides a material platform to explore exciton-based electronics and opto-electronics.
文摘This study focused on the synergistic effect of alloying elements neodymium(Nd) and dysprosium(Dy) on the ignition-proof performance of AZ91D alloy. The ignition-proof mechanism of AZ91D-3 Nd-x Dy(x = 0.5, 1.0, 1.5, 2.0 and 2.5 wt.%) alloy was discussed in depth through ignition-proof testing and microstructure observation. The results showed that the AZ91D-3 Nd-2 Dy alloy exhibited the highest ignition-point of 893 K, increased by 69 K as compared to the AZ91D alloy. The ignition-proof mechanism of Nd and Dy additions lay in three aspects:(1) the formation of denser oxide film consisting of Dy_2O_3 and MgO improves the oxidation resistance of the alloy,(2) the great reduction of the low melting-point phase β-Mg_(17)Al_(12), which leads to the decrease in the oxygen diffusion channels, and(3) the newly formed high melting-point phases(Al_2Nd and Al_2Dy), which block the oxygen diffusion channels and prevent the chemical reaction of Mg and oxygen.
基金financially supported by the National Natural Science Foundation of China(Grants Nos.11790311,92165205,51902152,11874210,and 11774149)the National Key R&D Program of China(Grants No.2021YFA1400403)。
文摘By using scanning tunneling microscopy,we investigated the electronic evolution of T_(d)-WTe_(2) via in-situ surface alkali K atoms deposition.The T_(d)-WTe_(2) surface is electron doped upon K deposition,and as the K coverage increases,two gaps are sequentially opened near Fermi energy,which probably indicates that two phase transitions concomitantly occur during electron doping.The two gaps both show a dome-like dependence on the K coverage.While the bigger gap shows no prominent dependence on the magnetic field,the smaller one can be well suppressed and thus possibly corresponds to the superconducting transition.This work indicates that T_(d)-WTe_(2) exhibits rich quantum states closely related to the carrier concentration.
基金supported by the National Natural Science Foundation of China(No.51501053 and 51475138)Science and Technology Plan Projects of Hebei Province(No.15211026)
文摘In the present study, closed-cell aluminum foams with different percentages of erbium (Er) element were successfully prepared. The distribution and existence form of erbium (Er) element and its effect on the compressive properties of the foams were investigated. Results show that Er uniformly distributes in the cell walls in the forms of Al3Er intermetallic compound and AI-Er solid solutions. Compared with commercially pure aluminum foam, Er-containing foams possess higher micro-hardness, compressive strength and energy absorption capacity due to solid solution strengthening and second phase strengthening effects. Additionally, the amount of Er element should be controlled in the range of 0.10wt.%-0.50wt.% in order to obtain a good combination of compressive strength and energy absorption properties.
基金support from the National Natural Science Foundation of China(Nos.51701060 and 51601181)the Natural Science Foundation of Hebei Province(Grant No.E2016202130) and Tianjin city(No.18JCQNJC03900)+1 种基金the Graduate Student Outstanding Innovation Project of Hebei Province(Grant No.CXZZBS2018030)the Joint Doctoral Training Foundation of HEBUT(Grant No.2018HW0008)
文摘Mg and its alloys are the lightest structural metals available and are extremely attractive for applications as lightweight components, particularly in the automobile, electronic, and aerospace industries. The global market for wrought Mg alloys has steadily expanded over the past decade. And numerous studies have been carried out to meet this increasing demand of high-performance Mg alloys. However, Mg extrusion alloys have had a very limited usage so far. To overcome existing industrial challenges, one desirable approach is the development of low-cost rare earth(RE) free Mg extrusion alloys with superior mechanical properties. This review will introduce the recent research highlights in the extrusion of Mg alloys, specifi cally focusing on low-cost RE-free Mg alloy. The results from both the literature and our previous study are summarized and critically reviewed. Several aspects of RE-free Mg extrusion alloys are described in detail:(1) novel alloying designs including Mg–Al-, Mg–Zn-, Mg–Ca-, Mg–Sn-, and Mg–Bi-based alloys,(2) advanced extrusion techniques, and(3) extrusion-related severe plastic deformation(SPD) processing. Accordingly, considering the large gap in mechanical properties between the current RE-free Mg alloys and high-performance aluminum alloys, new alloy design, processing route control, and recommendations for future research on RE-free Mg extrusion alloys are also proposed. We hope this review will not only off er insightful information regarding the extrusion of RE-free Mg alloys but also inspire the development of new Mg extrusion technologies.