期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Evolutionary Computation in Social Propagation over Complex Networks: A Survey 被引量:1
1
作者 Tian-Fang Zhao wei-neng chen +1 位作者 Xin-Xin Ma Xiao-Kun Wu 《International Journal of Automation and computing》 EI CSCD 2021年第4期503-520,共18页
Social propagation denotes the spread phenomena directly correlated to the human world and society, which includes but is not limited to the diffusion of human epidemics, human-made malicious viruses, fake news, socia... Social propagation denotes the spread phenomena directly correlated to the human world and society, which includes but is not limited to the diffusion of human epidemics, human-made malicious viruses, fake news, social innovation, viral marketing, etc. Simulation and optimization are two major themes in social propagation, where network-based simulation helps to analyze and understand the social contagion, and problem-oriented optimization is devoted to contain or improve the infection results. Though there have been many models and optimization techniques, the matter of concern is that the increasing complexity and scales of propagation processes continuously refresh the former conclusions. Recently, evolutionary computation(EC) shows its potential in alleviating the concerns by introducing an evolving and developing perspective. With this insight, this paper intends to develop a comprehensive view of how EC takes effect in social propagation. Taxonomy is provided for classifying the propagation problems, and the applications of EC in solving these problems are reviewed. Furthermore, some open issues of social propagation and the potential applications of EC are discussed.This paper contributes to recognizing the problems in application-oriented EC design and paves the way for the development of evolving propagation dynamics. 展开更多
关键词 Evolutionary computation complex network propagation dynamics social diffusion evolution model optimization algorithm
原文传递
Set-based discrete particle swarm optimization and its applications: a survey 被引量:1
2
作者 wei-neng chen Da-Zhao TAN 《Frontiers of Computer Science》 SCIE EI CSCD 2018年第2期203-216,共14页
Particle swarm optimization (PSO) is one of the most popular population-based stochastic algorithms for solving complex optimization problems. While PSO is simple and effective, it is originally defined in continuou... Particle swarm optimization (PSO) is one of the most popular population-based stochastic algorithms for solving complex optimization problems. While PSO is simple and effective, it is originally defined in continuous space. In order to take advantage of PSO to solve combinatorial optimization problems in discrete space, the set-based PSO (S-PSO) framework extends PSO for discrete optimization by redefining the operations in PSO utilizing the set operations. Since its proposal, S-PSO has attracted increasing research attention and has become a promising approach for discrete optimization problems. In this paper, we intend to provide a comprehensive survey on the concepts, development and applications of S-PSO. First, the classification of discrete PSO algorithms is presented. Then the S-PSO framework is given. In particular, we will give an insight into the solution construction strategies, constraint handling strategies, and alternative reinforcement strategies in S-PSO together with its different variants. Furthermore, the extensions and applications of S-PSO are also discussed systemically. Some potential directions for the research of S-PSO are also discussed in this paper. 展开更多
关键词 particle swarm optimization combinatorial optimization discrete optimization swarm intelligence setbased
原文传递
A survey on algorithm adaptation in evolutionary computation
3
作者 Jun ZHANG wei-neng chen +4 位作者 Zhi-Hui ZHAN Wei-Jie YU Yuan-Long LI Ni chen Qi ZHOU 《Frontiers of Electrical and Electronic Engineering in China》 CSCD 2012年第1期16-31,共16页
Evolutionary computation (EC) is one of the fastest growing areas in computer science that solves intractable optimization problems by emulating biologic evolution and organizational behaviors in nature. To de- sign... Evolutionary computation (EC) is one of the fastest growing areas in computer science that solves intractable optimization problems by emulating biologic evolution and organizational behaviors in nature. To de- sign an EC algorithm, one needs to determine a set of algorithmic configurations like operator selections and parameter settings. How to design an effective and ef- ficient adaptation scheme for adjusting the configura- tions of EC algorithms has become a significant and promising research topic in the EC research community. This paper intends to provide a comprehensive survey on this rapidly growing field. We present a classification of adaptive EC (AEC) algorithms from the perspective of how an adaptation scheme is designed, involving the adaptation objects, adaptation evidences, and adapta- tion methods. In particular, by analyzing tile popula- tion distribution characteristics of EC algorithms, we discuss why and how the evolutionary state information of EC can be estimated and utilized for designing ef- fective EC adaptation schemes. Two AEC algorithms using the idea of evolutionary state estimation, includ- ing the clustering-based adaptive genetic algorithm and the adaptive particle swarm optimization algorithm are presented in detail. Some potential directions for the re- search of AECs are also discussed in this paper. 展开更多
关键词 evolutionary algorithm (EA) evolution- ary computation (EC) algorithm adaptation parameter control
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部