期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Carbon cathode with heteroatom doping and ultrahigh surface area enabling enhanced capacitive behavior for potassium-ion hybrid capacitors
1
作者 Yan Xiong Ya-Fei Zhang +9 位作者 Chun-Liu Zhu Lei Yang Huan-Yu Liang Jing Shi Jing-Wei Chen wei-qiantian Shuai Liu Zhi Li Jing-Yi Wu Huan-Lei Wang 《Rare Metals》 SCIE EI CAS CSCD 2024年第5期2136-2149,共14页
Potassium-ion hybrid capacitors(PIHCs)are widely regarded as highly promising energy storage devices,due to their exceptional energy density,impressive power density,and abundant potassium resources.Unfortunately,rest... Potassium-ion hybrid capacitors(PIHCs)are widely regarded as highly promising energy storage devices,due to their exceptional energy density,impressive power density,and abundant potassium resources.Unfortunately,restricted by the inherent capacitive storage mechanism,the carbon cathodes possess a much lower specific capacity than battery-type anodes.Therefore,designing high-performance carbon cathodes is extremely urgent for the development of PIHCs.Herein,N,O codoped porous carbon(NOPC)was fabricated through the NaCl hard template method and combined KOH/melamine chemical activation technique,displaying the characteristics of abundant N/O content(4.7 at%/16.9 at%),ultrahigh specific surface area(3092 m^(2)g^(-1))and hierarchical pore network.The designed NOPC cathode delivers a high specific capacity(164.4 mAh.g^(-1)at 0.05 A.g^(-1))and superior cyclability(95.1%retention ratio at 2 A·g^(-1)over 2500 cycles).Notably,the adjustable ratio of micropores to mesopores facilitates the achievement of the optimal bal-ance between capacity and rate capability.Moreover,the pseudocapacitance can be further augmented through the incorporation of N/O functional groups.As expected,the graphite//NOPC based PIHC possesses a high energy density of 113 Wh·kg-at 747 W·kg^(-1)and excellent capacity retention of 84.4% fter 400 cycles at 1.0 A·g^(-1).This work introduces a novel strategy for designing carbon cathodes that enhances the electrochemical performance of PIHCs. 展开更多
关键词 Template method N/O co-doping High specific surface area Carbon cathode Potassium-ion capacitors
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部