A novel nano-WS_(2)/graphene nanosheets(GNSs)composite is obtained by ball milling with xylitol as auxiliary agent and hightemperature sintering.Xylitol improves the shear force during ball milling and well overcomes ...A novel nano-WS_(2)/graphene nanosheets(GNSs)composite is obtained by ball milling with xylitol as auxiliary agent and hightemperature sintering.Xylitol improves the shear force during ball milling and well overcomes the van der Waals interactions between the interlayer of graphite and WS_(2).Through high-temperature calcination,GNSs and WS_(2) nanosheets can form tight interface contact.The produced WS_(2)/GNSs composites can be used as anode materials for lithium-ion batteries,while maintaining a high reversible specific capacity of 705 mAh·g^(-1)with the capacity retention of 95%at a current density of 250 mA·g^(-1)after 200 cycles,mainly because WS_(2)/GNSs composites have a higher Li^(+)diffusion coefficient of 2.2×10^(-9)cm^(2)·s^(-1)and a higher specific surface area of 70.10 m^(2)·g^(-1).As a result,the xylitol-assisted ball milling method designed in this work is suitable for extended preparation of peeling of two-dimensional layer materials into nanosheets.展开更多
基金financially supported by the Education Department of Jiangxi Province (No.GJJ160202,No.GJJ190428)。
文摘A novel nano-WS_(2)/graphene nanosheets(GNSs)composite is obtained by ball milling with xylitol as auxiliary agent and hightemperature sintering.Xylitol improves the shear force during ball milling and well overcomes the van der Waals interactions between the interlayer of graphite and WS_(2).Through high-temperature calcination,GNSs and WS_(2) nanosheets can form tight interface contact.The produced WS_(2)/GNSs composites can be used as anode materials for lithium-ion batteries,while maintaining a high reversible specific capacity of 705 mAh·g^(-1)with the capacity retention of 95%at a current density of 250 mA·g^(-1)after 200 cycles,mainly because WS_(2)/GNSs composites have a higher Li^(+)diffusion coefficient of 2.2×10^(-9)cm^(2)·s^(-1)and a higher specific surface area of 70.10 m^(2)·g^(-1).As a result,the xylitol-assisted ball milling method designed in this work is suitable for extended preparation of peeling of two-dimensional layer materials into nanosheets.