期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A review on the structure-performance relationship of the catalysts during propane dehydrogenation reaction 被引量:3
1
作者 Bohan Feng Yue-Chang Wei +1 位作者 wei-yu song Chun-Ming Xu 《Petroleum Science》 SCIE CAS CSCD 2022年第2期819-838,共20页
Dehydrogenation of propane(PDH)technology is one of the most promising on-purpose technologies to solve supply-demand unbalance of propylene.The industrial catalysts for PDH,such as Pt-and Cr-based catalysts,still hav... Dehydrogenation of propane(PDH)technology is one of the most promising on-purpose technologies to solve supply-demand unbalance of propylene.The industrial catalysts for PDH,such as Pt-and Cr-based catalysts,still have their own limitation in expensive price and security issues.Thus,a deep understanding into the structure-performance relationship of the catalysts during PDH reaction is necessary to achieve innovation in advanced high-efficient catalysts.In this review,we focused on discussion of structure-performance relationship of catalysts in PDH.Based on analysis of reaction mechanism and nature of active sites,we detailed interaction mechanism between structure of active sites and catalytic performance in metal catalysts and oxide catalysts.The relationship between coke deposition,co-feeding gas,catalytic activity and nanostructure of the catalysts are also highlighted.With these discussions on the relationship between structure and performances,we try to provide the insights into microstructure of active sites in PDH and the rational guidance for future design and development of PDH catalysts. 展开更多
关键词 Dehydrogenation of propane Metal catalysts Oxide catalysts Structure-performance relationship Active site Reaction mechanism
下载PDF
Preparation of a highly efficient Pt/USY catalyst for hydrogenation and selective ring-opening reaction of tetralin 被引量:3
2
作者 Qi Wang Zhang-Gui Hou +6 位作者 Bo Zhang Jian Liu wei-yu song De-Sheng Xue Li-Zhi Liu Dong Wang Xin-Guo Chen 《Petroleum Science》 SCIE CAS CSCD 2018年第3期605-612,共8页
Ultrastable Y zeolite(USY)-supported Pt catalyst was prepared by gas-bubbling-assisted membrane reduction. The influence of reaction conditions and the metal and acid sites of catalysts on the catalytic performance ... Ultrastable Y zeolite(USY)-supported Pt catalyst was prepared by gas-bubbling-assisted membrane reduction. The influence of reaction conditions and the metal and acid sites of catalysts on the catalytic performance of catalyst in hydrogenation and selective ring opening of tetralin, 1,2,3,4-tetrahydronaphthalene(THN), was studied. It was found that the optimal reaction conditions were at a temperature of 280 °C, hydrogen pressure of 4 MPa, liquid hourly space velocity of 2 h^-1 and H2/THN ratio of 750. Under these optimal conditions, a high conversion of almost 100% was achieved on the 0.3 Pt/USY catalyst. XRD patterns and TEM images revealed that Pt particles were highly dispersed on the USY, favorable to the hydrogenation reaction of tetralin. Ammonia temperature-programmed desorption and Py-IR results indicated that the introduction of Pt can reduce the acid sites of USY, particularly the strong acid sites of USY. Thus, the hydrocracking reaction can be suppressed. 展开更多
关键词 Hydrogenation and selective ring opening Reaction conditions Supported Pt catalyst TETRALIN
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部