期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
高温反应合成莫来石实现钒渣氯化残渣的无毒高效利用 被引量:2
1
作者 刘仕元 薛未华 +1 位作者 王丽君 周国治 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2023年第8期2523-2534,共12页
采用氯化法从钒渣中提取有价元素(Ti、Cr、Fe、Mn和V)后得到的浸出渣主要成分为Al_(2)O_(3)和SiO_(2),还含有少量有害元素Cr和V。为了减少Cr和V对环境的污染,提出一种浸出渣无毒和有效利用的新方法。以浸出渣为原料,加入适量SiO_(2),在1... 采用氯化法从钒渣中提取有价元素(Ti、Cr、Fe、Mn和V)后得到的浸出渣主要成分为Al_(2)O_(3)和SiO_(2),还含有少量有害元素Cr和V。为了减少Cr和V对环境的污染,提出一种浸出渣无毒和有效利用的新方法。以浸出渣为原料,加入适量SiO_(2),在1600℃下固相烧结5 h,合成抗压强度为133.345 MPa、密度为3.20 g/cm^(3)的纯莫来石。浸出渣中的微量元素Ti和有害元素V和Cr在高温反应过程中进入莫来石晶格形成固溶体,稳定在莫来石相中。合成的样品采用毒性特性浸出程序(TCLP)和GB5085.3—2007进行检测。结果表明,莫来石符合毒性浸出标准,是一种安全无毒产品。 展开更多
关键词 浸出残渣 钒渣 综合利用 高毒性六价铬 莫来石 毒性特性浸出程序
下载PDF
Reconstruction of three-dimensional grain structure in polycrystalline iron via an interactive segmentation method
2
作者 Min-nan Feng Yu-cong Wang +2 位作者 Hao Wang Guo-quan Liu wei-hua xue 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第3期257-263,共7页
Using a total of 297 segmented sections, we reconstructed the three-dimensional (3D) structure of pure iron and obtained the largest dataset of 16254 3D complete grains reported to date. The mean values of equivalent ... Using a total of 297 segmented sections, we reconstructed the three-dimensional (3D) structure of pure iron and obtained the largest dataset of 16254 3D complete grains reported to date. The mean values of equivalent sphere radius and face number of pure iron were observed to be consistent with those of Monte Carlo simulated grains, phase-field simulated grains, Ti-alloy grains, and Ni-based super alloy grains. In this work, by finding a balance between automatic methods and manual refinement, we developed an interactive segmentation method to segment serial sections accurately in the reconstruction of the 3D microstructure; this approach can save time as well as substantially eliminate errors. The segmentation process comprises four operations: image preprocessing, breakpoint detection based on mathematical morphology analysis, optimized automatic connection of the breakpoints, and manual refinement by artificial evaluation. © 2017, University of Science and Technology Beijing and Springer-Verlag Berlin Heidelberg. 展开更多
关键词 Grain boundaries Image segmentation IRON Mathematical morphology Titanium alloys
下载PDF
Machine learning study on time-temperature-transformation diagram of carbon and low-alloy steel
3
作者 Xiao-ya Huang Biao Zhang +6 位作者 Qiang Tian Hong-hui Wu Bin Gan Zhong-nan Bi wei-hua xue Asad Ullah Hao Wang 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2023年第5期1032-1041,共10页
Time-temperature-transformation(TTT)diagram plays a critical role in designing appropriate heat treatment process of steels by describing the relationship among holding time,temperature,and quantities of phase transfo... Time-temperature-transformation(TTT)diagram plays a critical role in designing appropriate heat treatment process of steels by describing the relationship among holding time,temperature,and quantities of phase transformation.Making predictions for TTT diagrams of new steel rapidly and accurately is therefore of much practical importance,especially for costly and time-consuming experimental determination.Here,TTT diagrams for carbon and low-alloy steels were predicted using machine learning methods.Five commonly used machine learning(ML)algorithms,backpropagation artificial neural network(BP network),LibSVM,k-nearest neighbor,Bagging,and Random tree,were adopted to select appropriate models for the prediction.The results illustrate that Bagging is the optimal model for the prediction of pearlite transformation and bainite transformation,and BP network is the optimal model for martensite transformation.Finally,the ML framework composed of Bagging and BP network models was applied to predict the entire TTT diagram.Additionally,the ML models show superior performance on the prediction of testing samples than the commercial software JMatPro. 展开更多
关键词 Time-temperature-transformation diagram Carbon steel Low-alloy steel Machine learning Prediction framework
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部