A corrugated structure is built and tested on many FEL facilities,providing a'dechirper'mechanism for eliminating energy spread upstream of the undulator section of X-ray FELs.The wakefield effects are here st...A corrugated structure is built and tested on many FEL facilities,providing a'dechirper'mechanism for eliminating energy spread upstream of the undulator section of X-ray FELs.The wakefield effects are here studied for the beam dechirper at the Shanghai high repetition rate XFEL and extreme light facility(SHINE),and compared with analytical calculations.When properly optimized,the energy spread is well compensated.The transverse wakefield effects are also studied,including the dipole and quadrupole effects.By using two orthogonal dechirpers,we confirm the feasibility of restraining the emittance growth caused by the quadrupole wakefield.A more efficient method is thus proposed involving another pair of orthogonal dechirpers.展开更多
Compared with traditional isobaric combustion,continuous rotating detonation(CRD)has been theoretically proved to be a more efficient combustion mode with higher thermal cycle efficiency.However,the realization and st...Compared with traditional isobaric combustion,continuous rotating detonation(CRD)has been theoretically proved to be a more efficient combustion mode with higher thermal cycle efficiency.However,the realization and stable operating of liquid kerosene detonation is still a challenge.As a major component of kerosene pyrolysis products after regenerative cooling,ethylene is a transitional hydrocarbon fuel from kerosene to hydrogen and it is worth studying.In this paper,a series of 2 D numerical simulations are conducted to investigate the effects of the injection nozzle on the ethylene-air CRD.Three geometrical parameters of the nozzle are thoroughly tested including the distance between two neighboring nozzle centers,the nozzle exit width,and the slant angle of the nozzle.The results show that an ethylene-air detonation wave is realized and it propagates stably.A small distance between two neighboring nozzle centers is conducive to improving the strength of the CRD wave and leads to greater feedback pressure into the plenum.As the nozzle exit width increases,the strength of the CRD wave and the feedback pressure into the plenum both increase.The CRD wave propagation velocity is greatly improved and the feedback pressure into the plenum is significantly reduced when the slant angle of the nozzle is positive.By contrast,a sizeable reduction in velocity is found when the angle is negative.The co-rotating two-wave propagation mode is observed when the angle is 30°,and the highest CRD propagation velocity and the lowest feedback pressure are both obtained when the angle is 60°.展开更多
To investigate the impact of combustor width on continuous rotating detonation(CRD)fueled by ethylene and air,a series of 3 D simulations are conducted by changing the inner cylinder radius of an annular combustor whi...To investigate the impact of combustor width on continuous rotating detonation(CRD)fueled by ethylene and air,a series of 3 D simulations are conducted by changing the inner cylinder radius of an annular combustor while retaining the same outer cylinder radius.The results show that the CRD wave propagates more steadily and faster as the combustor width increases.The high-temperature zone at the backward-facing step preheats the propellants and contributes to the steady propagation of the CRD wave in 25-and 30-mm wide combustors.The highest and the lowest velocities are obtained in the30-and 15-mm wide combustors at,respectively,1880.27 and 1681.01 m/s.On the other hand,the average thrust decreases as the combustor width increases.The highest thrust is obtained in the 15-mm wide combustor while the lowest is in the 30-mm wide combustor,at 758.06 and 525.93 N,respectively.Nevertheless,the thrust is much more stable in the 25-and 30-mm wide combustors than in the 15-and 20-mm wide combustors.展开更多
基金supported by the Youth Innovation Promotion Association CAS(Nos.2018300 and 2021282)the National Key Research and Development Program of China(No.2018YFE0103100)the National Natural Science Foundation of China(No.11935020)。
文摘A corrugated structure is built and tested on many FEL facilities,providing a'dechirper'mechanism for eliminating energy spread upstream of the undulator section of X-ray FELs.The wakefield effects are here studied for the beam dechirper at the Shanghai high repetition rate XFEL and extreme light facility(SHINE),and compared with analytical calculations.When properly optimized,the energy spread is well compensated.The transverse wakefield effects are also studied,including the dipole and quadrupole effects.By using two orthogonal dechirpers,we confirm the feasibility of restraining the emittance growth caused by the quadrupole wakefield.A more efficient method is thus proposed involving another pair of orthogonal dechirpers.
基金the National Natural Science Foundation of China(Nos.51776220 and 91541103)the Postgraduate Scientific Research Innovation Project of Hunan Province,China。
文摘Compared with traditional isobaric combustion,continuous rotating detonation(CRD)has been theoretically proved to be a more efficient combustion mode with higher thermal cycle efficiency.However,the realization and stable operating of liquid kerosene detonation is still a challenge.As a major component of kerosene pyrolysis products after regenerative cooling,ethylene is a transitional hydrocarbon fuel from kerosene to hydrogen and it is worth studying.In this paper,a series of 2 D numerical simulations are conducted to investigate the effects of the injection nozzle on the ethylene-air CRD.Three geometrical parameters of the nozzle are thoroughly tested including the distance between two neighboring nozzle centers,the nozzle exit width,and the slant angle of the nozzle.The results show that an ethylene-air detonation wave is realized and it propagates stably.A small distance between two neighboring nozzle centers is conducive to improving the strength of the CRD wave and leads to greater feedback pressure into the plenum.As the nozzle exit width increases,the strength of the CRD wave and the feedback pressure into the plenum both increase.The CRD wave propagation velocity is greatly improved and the feedback pressure into the plenum is significantly reduced when the slant angle of the nozzle is positive.By contrast,a sizeable reduction in velocity is found when the angle is negative.The co-rotating two-wave propagation mode is observed when the angle is 30°,and the highest CRD propagation velocity and the lowest feedback pressure are both obtained when the angle is 60°.
基金supported by the National Natural Science Foundation of China(No.51776220)the Postgraduate Scientific Research Innovation Project of Hunan Province,China。
文摘To investigate the impact of combustor width on continuous rotating detonation(CRD)fueled by ethylene and air,a series of 3 D simulations are conducted by changing the inner cylinder radius of an annular combustor while retaining the same outer cylinder radius.The results show that the CRD wave propagates more steadily and faster as the combustor width increases.The high-temperature zone at the backward-facing step preheats the propellants and contributes to the steady propagation of the CRD wave in 25-and 30-mm wide combustors.The highest and the lowest velocities are obtained in the30-and 15-mm wide combustors at,respectively,1880.27 and 1681.01 m/s.On the other hand,the average thrust decreases as the combustor width increases.The highest thrust is obtained in the 15-mm wide combustor while the lowest is in the 30-mm wide combustor,at 758.06 and 525.93 N,respectively.Nevertheless,the thrust is much more stable in the 25-and 30-mm wide combustors than in the 15-and 20-mm wide combustors.