Effect of Ti(iso-C3H7O)4 treatment on the photoinduced charge carrier kinetics of nanocrystalline porous TiO2 films is studied by time-resolved microwave conductivity measurements. Analysis of the transient photocond...Effect of Ti(iso-C3H7O)4 treatment on the photoinduced charge carrier kinetics of nanocrystalline porous TiO2 films is studied by time-resolved microwave conductivity measurements. Analysis of the transient photoconductivity decays indicates that Ti(iso-C3H7O)4 treatment leads to an increased concentration of photogenerated charge carriers and a fast interfacial transfer rate of holes via the surface modification of the freshly growing TiO2 nanocrystallites.展开更多
The electrooxidation of CO on Ru (0001) and RuO2 (100) electrode surfaces were characterized by cyclic voltammetry, AES and RHEED. The CO adlayer was first partially oxidized at 0.8 V, which is controlled by the atta...The electrooxidation of CO on Ru (0001) and RuO2 (100) electrode surfaces were characterized by cyclic voltammetry, AES and RHEED. The CO adlayer was first partially oxidized at 0.8 V, which is controlled by the attack of oxygen species toward the Ru(0001) surface. The remaining CO adlayer oxidation at 0.55 V is related to the combination of CO molecules with oxygen species already located on the surface. In contrast, successive peaks on RuO2(100) at 0.4 V and 0.72 V are observed, which shows that CO molecules can directly react with two different lattice-oxygen on the surface to carbon dioxide.展开更多
基金This work was supported by National Research Fund for Fundamental Key Project(G2000028205)Innovative Foundation of Chinese Academy of Sciences(KGCX2-303-02)the Project of the National Natural Science Foundation of China(29873057).
文摘Effect of Ti(iso-C3H7O)4 treatment on the photoinduced charge carrier kinetics of nanocrystalline porous TiO2 films is studied by time-resolved microwave conductivity measurements. Analysis of the transient photoconductivity decays indicates that Ti(iso-C3H7O)4 treatment leads to an increased concentration of photogenerated charge carriers and a fast interfacial transfer rate of holes via the surface modification of the freshly growing TiO2 nanocrystallites.
文摘The electrooxidation of CO on Ru (0001) and RuO2 (100) electrode surfaces were characterized by cyclic voltammetry, AES and RHEED. The CO adlayer was first partially oxidized at 0.8 V, which is controlled by the attack of oxygen species toward the Ru(0001) surface. The remaining CO adlayer oxidation at 0.55 V is related to the combination of CO molecules with oxygen species already located on the surface. In contrast, successive peaks on RuO2(100) at 0.4 V and 0.72 V are observed, which shows that CO molecules can directly react with two different lattice-oxygen on the surface to carbon dioxide.