The mechanical behavior and the effect of pre-strain on recovery behavior of Ti50Ni47Fe3 (at. pct) alloy were investigated systematically by tensile and recovered tests accompanied by electrical resistance measurement...The mechanical behavior and the effect of pre-strain on recovery behavior of Ti50Ni47Fe3 (at. pct) alloy were investigated systematically by tensile and recovered tests accompanied by electrical resistance measurement. Ti50Ni47Fe3 alloy has different deformation behaviors at different temperature ranges, the deformation curves in different temperature range can be classified into four kinds. The start temperature of recovery increases with the increase of pre-strain. There exists an optimal deformation condition, at which the specimen exhibits maximum free recovery strain. With increasing pre-strain the recovery stress increases and reaches the maximum at 8% pre-strain. R-phase to parent transition offered about 0.2% recovery strain. With pre-strain increasing the recovery stress increases and reaches to the maximum at 8% pre-strain. The recovery stress is corresponding with the critical stress of stress-induced martensitic transformation.展开更多
文摘The mechanical behavior and the effect of pre-strain on recovery behavior of Ti50Ni47Fe3 (at. pct) alloy were investigated systematically by tensile and recovered tests accompanied by electrical resistance measurement. Ti50Ni47Fe3 alloy has different deformation behaviors at different temperature ranges, the deformation curves in different temperature range can be classified into four kinds. The start temperature of recovery increases with the increase of pre-strain. There exists an optimal deformation condition, at which the specimen exhibits maximum free recovery strain. With increasing pre-strain the recovery stress increases and reaches the maximum at 8% pre-strain. R-phase to parent transition offered about 0.2% recovery strain. With pre-strain increasing the recovery stress increases and reaches to the maximum at 8% pre-strain. The recovery stress is corresponding with the critical stress of stress-induced martensitic transformation.