Compared with other stream applications, scientific stream programs are usually bound by memory accesses. Reusing streams across different iterations, i.e. loop-carried stream reuse, can effectively improve the SRF lo...Compared with other stream applications, scientific stream programs are usually bound by memory accesses. Reusing streams across different iterations, i.e. loop-carried stream reuse, can effectively improve the SRF locality, thus reducing memory accesses greatly. In the paper, we first present the algorism identifying loop-carried stream reuse and that exploiting the reuse after analyzing scientific computing applications. We then perform several representative microbenchmarks and scientific stream programs with and without our optimization on Isim, a cycle-accurate stream processor simulator. Experimental results show that our algorithms can effectively exploit loop-carried stream reuse for scientific stream programs and thus greatly improve the performance of memory-bound scientific stream programs.展开更多
Brain metastasis is a common and serious complication of breast cancer,which is commonly associated with poor survival and prognosis.In particular,the treatment of brain metastasis from triplenegative breast cancer(BM...Brain metastasis is a common and serious complication of breast cancer,which is commonly associated with poor survival and prognosis.In particular,the treatment of brain metastasis from triplenegative breast cancer(BM-TNBC)has to face the distinct therapeutic challenges from tumor heterogeneity,circulating tumor cells(CTCs),blood-brain barrier(BBB)and blood-tumor barrier(BTB),which is in unmet clinical needs.Herein,combining with the advantages of synthetic and natural targeting moieties,we develop a“Y-shaped”peptide pVAP-decorated platelet-hybrid liposome drug delivery system to address the all-stage targeted drug delivery for the whole progression of BM-TNBC.Inherited from the activated platelet,the hybrid liposomes still retain the native affinity toward CTCs.Further,the peptide-mediated targeting to breast cancer cells and transport across BBB/BTB are demonstrated in vitro and in vivo.The resultant delivery platform significantly improves the drug accumulation both in orthotopic breast tumors and brain metastatic lesions,and eventually exhibits an outperformance in the inhibition of BM-TNBC compared with the free drug.Overall,this work provides a promising prospect for the comprehensive treatment of BMTNBC,which could be generalized to other cell types or used in imaging platforms in the future.展开更多
With the rapid improvement of computation capability in high performance supercomputer system, the imbalance of performance between computation subsystem and storage subsystem has become more and more serious, especia...With the rapid improvement of computation capability in high performance supercomputer system, the imbalance of performance between computation subsystem and storage subsystem has become more and more serious, especially when various big data are produced ranging from tens of gigabytes up to terabytes. To reduce this gap, large-scale storage systems need to be designed and implemented with high performance and scalability. MilkyWay-2 (TH-2) supercomputer system with peak performance 54.9 Props, definitely has this kind of requirement for storage system. This paper mainly introduces the storage system in MilkyWay-2 supercomputer, including the hardware architecture and the parallel file system. The storage system in MilkyWay-2 supercomputer exploits a novel hybrid hierarchy storage architecture to enable high scalability of I/O clients, I/O bandwidth and storage capacity. To fit this architecture, a user level virtualized file system, named H^2FS, is designed and implemented which can cooperate local storage and shared storage together into a dynamic single namespace to optimize I/O performance in IO-intensive applications. The evaluation results show that the storage system in MilkyWay-2 supercomputer can satisfy the critical requirements in large scale supercomputer, such as performance and scalability.展开更多
Boson sampling is a promising candidate for demonstrating quantum supremacy. The validation that involves judging whether a quantum setup outputs photons following the boson sampling model is an essential task in the ...Boson sampling is a promising candidate for demonstrating quantum supremacy. The validation that involves judging whether a quantum setup outputs photons following the boson sampling model is an essential task in the experiments. However, the current validation methods may result in an incorrect conclusion being reached in realistic experiments, in which no ideally identical photons exist. Accordingly, this study proposes a slope-based approach, which is an extended Bayesian validation, to model the degree of photon indistinguishability. Through numerical simulations and performance evaluations, we demonstrate that the proposed approach can correctly validate boson sampling against the distribution of classical particles. In addition to offering a useful approach for validation, our research indicates that physicists should pay more attention to the quality of photon indistinguishability in boson sampling experiments.展开更多
文摘Compared with other stream applications, scientific stream programs are usually bound by memory accesses. Reusing streams across different iterations, i.e. loop-carried stream reuse, can effectively improve the SRF locality, thus reducing memory accesses greatly. In the paper, we first present the algorism identifying loop-carried stream reuse and that exploiting the reuse after analyzing scientific computing applications. We then perform several representative microbenchmarks and scientific stream programs with and without our optimization on Isim, a cycle-accurate stream processor simulator. Experimental results show that our algorithms can effectively exploit loop-carried stream reuse for scientific stream programs and thus greatly improve the performance of memory-bound scientific stream programs.
基金supported by Shanghai Education Commission Major Project(No.2017-01-07-00-07-E00052,China)National Natural Science Foundation of China(Nos.81773657,81690263,and 81903547,China)Shanghai Sailing Program(No.20YF1404500,China)。
文摘Brain metastasis is a common and serious complication of breast cancer,which is commonly associated with poor survival and prognosis.In particular,the treatment of brain metastasis from triplenegative breast cancer(BM-TNBC)has to face the distinct therapeutic challenges from tumor heterogeneity,circulating tumor cells(CTCs),blood-brain barrier(BBB)and blood-tumor barrier(BTB),which is in unmet clinical needs.Herein,combining with the advantages of synthetic and natural targeting moieties,we develop a“Y-shaped”peptide pVAP-decorated platelet-hybrid liposome drug delivery system to address the all-stage targeted drug delivery for the whole progression of BM-TNBC.Inherited from the activated platelet,the hybrid liposomes still retain the native affinity toward CTCs.Further,the peptide-mediated targeting to breast cancer cells and transport across BBB/BTB are demonstrated in vitro and in vivo.The resultant delivery platform significantly improves the drug accumulation both in orthotopic breast tumors and brain metastatic lesions,and eventually exhibits an outperformance in the inhibition of BM-TNBC compared with the free drug.Overall,this work provides a promising prospect for the comprehensive treatment of BMTNBC,which could be generalized to other cell types or used in imaging platforms in the future.
基金Acknowledgements This work was supported by the National High-Tech Research & Development Program of China (863 Program) (2012AA01A301), and by the National Natural Science Foundation of China (Grant Nos. 61120106005, 61202118, 61303187).
文摘With the rapid improvement of computation capability in high performance supercomputer system, the imbalance of performance between computation subsystem and storage subsystem has become more and more serious, especially when various big data are produced ranging from tens of gigabytes up to terabytes. To reduce this gap, large-scale storage systems need to be designed and implemented with high performance and scalability. MilkyWay-2 (TH-2) supercomputer system with peak performance 54.9 Props, definitely has this kind of requirement for storage system. This paper mainly introduces the storage system in MilkyWay-2 supercomputer, including the hardware architecture and the parallel file system. The storage system in MilkyWay-2 supercomputer exploits a novel hybrid hierarchy storage architecture to enable high scalability of I/O clients, I/O bandwidth and storage capacity. To fit this architecture, a user level virtualized file system, named H^2FS, is designed and implemented which can cooperate local storage and shared storage together into a dynamic single namespace to optimize I/O performance in IO-intensive applications. The evaluation results show that the storage system in MilkyWay-2 supercomputer can satisfy the critical requirements in large scale supercomputer, such as performance and scalability.
基金supported by the National Natural Science Foundation of China(Grant No.61632021)。
文摘Boson sampling is a promising candidate for demonstrating quantum supremacy. The validation that involves judging whether a quantum setup outputs photons following the boson sampling model is an essential task in the experiments. However, the current validation methods may result in an incorrect conclusion being reached in realistic experiments, in which no ideally identical photons exist. Accordingly, this study proposes a slope-based approach, which is an extended Bayesian validation, to model the degree of photon indistinguishability. Through numerical simulations and performance evaluations, we demonstrate that the proposed approach can correctly validate boson sampling against the distribution of classical particles. In addition to offering a useful approach for validation, our research indicates that physicists should pay more attention to the quality of photon indistinguishability in boson sampling experiments.