期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Trends and abrupt changes in surface vapor content over Tarim Basin during the last 50 years 被引量:3
1
作者 HongJun LI weiyi mao +2 位作者 Yong ZHAO MinZhong WANG Wen HUO 《Journal of Arid Land》 SCIE 2012年第3期260-270,共11页
The surface vapor content has a close correlation with the generation of precipitation. Based on the atmospheric circulation data and surface vapor content data from 37 weather stations across the Tarim Basin dur- ing... The surface vapor content has a close correlation with the generation of precipitation. Based on the atmospheric circulation data and surface vapor content data from 37 weather stations across the Tarim Basin dur- ing 1961-2010, the paper analyzed the vapor variation trend, period, abrupt changes and their causes. The results show that the increase trend of surface vapor content over the Tarim Basin mostly conforms with the average trend coefficient of 0.48. There were 3 centers displaying a trend of high vapor increase and 3 centers displaying a low vapor increase. These centers were distributed in strips and blocks across the basin from northeast to southwest. Notable inter-decadal variations in annual and seasonal vapor contents occurred in the Tarim Basin during the 50 years of the study period, with more vapor after the mid-1980s and less vapor in the 1960s and the 1970s. The significant increase in vapor content in the 50 year period occurred mostly in the 1980s and the 1990s. The in- creasing trend across the four seasons was strongest in summer, reaching 0.43, and weakest in spring. Great variations existed between the spring trend and the annual, summer, autumn and winter trends. During the 50-year study period, there are distinguishable periods of 4-6 years and 8-10 years in which the annual and seasonal vapor contents varied alternately between low and high concentrations. The annual vapor content and that of the four individual seasons all changed abruptly in about the mid-1980s (a〈0.05). The west wind circulation, Tibetan Plateau circulation and the annual mean temperatures of the Tarim Basin are the main factors that influenced the surface vapor content over the study area, of which the Tibetan Plateau circulation may be the most important one. 展开更多
关键词 surface vapor content climate factors periodic variation abrupt change Tarim Basin
下载PDF
Responses to climate warming of hydrological processes in the upper Kelan River in the Altay Mountains, Xinjiang, China 被引量:3
2
作者 YongPing Shen GuoYa Wang +3 位作者 QingBai Wu NingLian Wang weiyi mao HongChao Su 《Research in Cold and Arid Regions》 2010年第4期315-327,共13页
Kelan River is a branch of the Ertix River, originating in the Altay Mountains in Xinjiang, northwestern China. The upper streams of the Kelan River are located on the southern slope of the Altay Mountains; they arise... Kelan River is a branch of the Ertix River, originating in the Altay Mountains in Xinjiang, northwestern China. The upper streams of the Kelan River are located on the southern slope of the Altay Mountains; they arise from small glacial lakes at an elevation of more than 2,500 m. The total water-collection area of the studied basin, from 988 to 3,480 m, is about 1,655 km2. Almost 95 percent of the basin area is covered with snow in winter. The westerly air masses deplete nearly all the moisture that comes in the form of snow during the winter months in the upper and middle reaches of the basin. That annual flow from the basin is about 382 mm, about 45 percent of which is contributed by snowmelt. The mean annual precipitation in the basin is about 620 mm, which is primarily concentrated in the upper and middle basin. The Kelan River system could be vulnerable to climate change because of substantial contribution from snowmelt runoff. The hydrological system could be altered significantly because of a warming of the climate. The impact of climate change on the hydrological cycle and events would pose an additional threat to the Altay region. The Kelan River, a typical snow-dominated watershed, has more area at higher elevations and accumulates snow during the winter. The peak flow occurs as a result of snow-melting during the late spring or early summer. Stream flow varies strongly throughout the year because of seasonal cycles of precipitation, snowpack, temperature, and groundwater. Changes in the temperature and precipitation affect the timing and volume of stream-flow. The stream-flow consists of contributions from meltwater of snow and ice and from runoff of rainfall. Therefore, it has low flow in winter, high flow during the spring and early summer as the snowpack melts, and less flows during the late summer. Because of the warming of the current climate change, hydrology processes of the Kelan River have undergone marked changes, as evidenced by the shift of the maximum flood peak discharge from May to June; the largest monthly runoffs also have an increment of about 15 percent related to before 1980; April-June runoff increased from the 60 percent of the annual runoff before 1980 to nearly 70 percent after 1990. The long-term trend shows temperature and precipitation increased mainly in the winter, but the rainfall declined in summer; hydrological process is manifested by the rising runoff in May and decreasing in June. Warming and the increase of winter and spring snowcover would lead to increased snowmelt, increasing the spring-flood hazards and the maximum flood discharge with disastrous consequences. The changed hydrological patterns caused by climate change have already impacted the urban water supply and agricultural and livestock production along the river. 展开更多
关键词 climate warming snowmelt runoff response upper Kelan River the Altay Mountains
下载PDF
Public Perceptions of Cryosphere Change and the Selection of Adaptation Measures in the rmqi River Basin 被引量:1
3
作者 maozhi Deng Hongguang Zhang +1 位作者 weiyi mao Yingwei Wang 《Advances in Climate Change Research》 SCIE 2011年第3期149-158,共10页
This study focuses on the characters of public perceptions on climate and cryosphere change,which are based on a questionnaire survey in the(U|¨)r(u|¨)mqi River Basin.In comparison with scientific observatio... This study focuses on the characters of public perceptions on climate and cryosphere change,which are based on a questionnaire survey in the(U|¨)r(u|¨)mqi River Basin.In comparison with scientific observation results of climate and cryosphere change,this paper analyzes the possible impact of the change on water resources and agriculture production in the area.Perceptions of most respondents on climate and cryosphere changes confirm the main objective facts.For the selection of adaptation measures addressing the shortage of water resource,the results are as follows:most people preferred to choose the measures like "policy change" and "basic facility construction" which are mostly implemented by the government and the policy-making department;some people showed more preference to the measures of avoiding unfavorable natural environment,such as finding job in or migrating to other places.The urgency of personal participation in the adaptation measures is still inadequate.Some adaptation measures should be implemented in line with local conditions and require the organic combination of "resource-development" with "water-saving". 展开更多
关键词 乌鲁木齐河流域 冰冻圈 基础设施建设 水资源短缺 市民 问卷调查 科学观测 农业生产
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部