期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Electrical transport properties of Fe Se single crystal under high magnetic field 被引量:6
1
作者 HongHui Wang ZhaoHui Cheng +6 位作者 MengZhu Shi DongHui Ma weizhuang zhuo ChuanYing Xi Tao Wu JianJun Ying XianHui Chen 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2021年第8期85-90,共6页
Understanding the normal electronic state is crucial for unveiling the mechanism of unconventional superconductivity(SC). In this paper, by applying a magnetic field of up to 37T on FeSe single crystals, we could reve... Understanding the normal electronic state is crucial for unveiling the mechanism of unconventional superconductivity(SC). In this paper, by applying a magnetic field of up to 37T on FeSe single crystals, we could reveal the normal-state transport properties after SC was completely suppressed. The normal-state resistivity exhibited a Fermi liquid behavior at low temperatures. Large orbital magnetoresistance(MR) was observed in the nematic state with H//c, whereas MR was negligible with H//ab. The magnitude of the orbital MR showed an unusual reduction, and Kohler’s rule was severely violated below 10-25 K;these were attributable to spin fluctuations. The results indicated that spin fluctuations played a paramount role in the normalstate transport properties of FeSe albeit the Fermi liquid nature was at low temperature. 展开更多
关键词 spin fluctuations Kohler’s rule FeSe-based superconductivity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部