期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Architecture engineering of carbonaceous anodes for high-rate potassium-ion batteries 被引量:2
1
作者 Tianlai Wu weicai zhang +6 位作者 Jiaying Yang Qiongqiong Lu Jing Peng Mingtao Zheng Fei Xu Yingliang Liu Yeru Liang 《Carbon Energy》 CAS 2021年第4期554-581,共28页
The limited lithium resource in earth's crust has stimulated the pursuit of alternative energy storage technologies to lithium-ion battery.Potassium-ion batteries(KIBs)are regarded as a kind of promising candidate... The limited lithium resource in earth's crust has stimulated the pursuit of alternative energy storage technologies to lithium-ion battery.Potassium-ion batteries(KIBs)are regarded as a kind of promising candidate for large-scale energy storage owing to the high abundance and low cost of potassium resources.Nevertheless,further development and wide application of KIBs are still challenged by several obstacles,one of which is their fast capacity deterioration at high rates.A considerable amount of effort has recently been devoted to address this problem by developing advanced carbonaceous anode materials with diverse structures and morphologies.This review presents and highlights how the architecture engineering of carbonaceous anode materials gives rise to high-rate performances for KIBs,and also the beneficial conceptions are consciously extracted from the recent progress.Particularly,basic insights into the recent engineering strategies,structural innovation,and the related advances of carbonaceous anodes for high-rate KIBs are under specific concerns.Based on the achievements attained so far,a perspective on the foregoing,and proposed possible directions,and avenues for designing high-rate anodes,are presented finally. 展开更多
关键词 carbonaceous anodes electronic conductivity high-rate performance ion diffusivity potassiumion batteries
下载PDF
Unveiling the role of lithiophilic sites denseness in regulating lithium ion deposition 被引量:1
2
作者 Tianlai Wu Yongyin Wang +6 位作者 weicai zhang Kaixin Lu Jieyin Tan Mingtao Zheng Yong Xiao Yingliang Liu Yeru Liang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第8期324-332,I0009,共10页
The construction of lithiophilic sites is an effective way to achieve uniform lithium(Li)ion deposition for stably cycling Li metal batteries.However,in-depth investigations involving lithiophilic sites denseness(LSD)... The construction of lithiophilic sites is an effective way to achieve uniform lithium(Li)ion deposition for stably cycling Li metal batteries.However,in-depth investigations involving lithiophilic sites denseness(LSD)in impacting Li ion deposition remain unknown.Herein we propose an insight into this issue by probing the effect of LSD on determining the Li ion deposition.Experimental characterization and theoretical simulation demonstrate that rational LSD plays a vital role in both Li nucleation and the subsequent Li ion plating behaviors.By tailoring the LSD from low to high,the accompanied Li nucleation overpotentials continuously decrease.Additionally,the Li ion mobility increases first and then weakens in the subsequent Li ion plating stage.Consequently,the Li metal with a moderate LSD allows a dendritefree morphology and satisfactory long-term cycling performances.This work affords a deeper fundamental understanding of lithiophilic chemistry that directs the development of efficient strategies to realize dendrite-free Li metal batteries. 展开更多
关键词 Li metal batteries Lithiophilic sites denseness Li nucleation Li ion plating behaviour Li dendrite inhibition
下载PDF
Cellulose Acetate Reverse Osmosis Membranes for Desalination:A Short Review
3
作者 Shuo Liu Lifen Hu +1 位作者 weicai zhang Hongyang Ma 《Non-Metallic Material Science》 2019年第2期15-25,共11页
Freshwater scarcity is a critical challenge that human society has to face in the 21st century.Desalination of seawater by reverse osmosis(RO)membranes was regarded as the most promising technology to overcome the cha... Freshwater scarcity is a critical challenge that human society has to face in the 21st century.Desalination of seawater by reverse osmosis(RO)membranes was regarded as the most promising technology to overcome the challenge given that plenty of potential fresh water resources in oceans.However,the requirements for high desalination efficiency in terms of permeation flux and rejection rate become the bottle-neck which needs to be broken down by developing novel RO membranes with new structure and composition.Cellulose acetate RO membranes exhibited long durability,chlorine resistance,and outstanding desalination efficiency that are worthy of being recalled to address the current shortcomings brought by polyamide RO membranes.In terms of performance enhancement,it is also important to use new ideas and to develop new strategies to modify cellulose acetate RO membranes in response to those complex challenges.Therefore,we focused on the state of the art cellulose acetate RO membranes and discussed the strategies on membrane structural manipulation adjusted by either phase separation or additives,which offered anti-fouling,anti-bacterial,anti-chlorine,durability,and thermo-mechanical properties to the modified membranes associated with the desalination performance,i.e.,permeation flux and rejection rate.The relationship between membrane structure and desalination efficiency was investigated and established to guide the development of cellulose acetate RO membranes for desalination. 展开更多
关键词 CELLULOSE ACETATE REVERSE osmosis MEMBRANE Composition DESALINATION
下载PDF
A review of rechargeable batteries for portable electronic devices 被引量:40
4
作者 Yeru Liang Chen-Zi Zhao +9 位作者 Hong Yuan Yuan Chen weicai zhang Jia-Qi Huang Dingshan Yu Yingliang Liu Maria-Magdalena Titirici Yu-Lun Chueh Haijun Yu Qiang zhang 《InfoMat》 SCIE CAS 2019年第1期6-32,共27页
Portable electronic devices(PEDs)are promising information-exchange platforms for real-time responses.Their performance is becoming more and more sensitive to energy consumption.Rechargeable batteries are the primary ... Portable electronic devices(PEDs)are promising information-exchange platforms for real-time responses.Their performance is becoming more and more sensitive to energy consumption.Rechargeable batteries are the primary energy source of PEDs and hold the key to guarantee their desired performance stability.With the remarkable progress in battery technologies,multifunctional PEDs have constantly been emerging to meet the requests of our daily life conveniently.The ongoing surge in demand for high-performance PEDs inspires the relentless pursuit of even more powerful rechargeable battery systems in turn.In this review,we present how battery technologies contribute to the fast rise of PEDs in the last decades.First,a comprehensive overview of historical advances in PEDs is outlined.Next,four types of representative rechargeable batteries and their impacts on the practical development of PEDs are described comprehensively.The development trends toward a new generation of batteries and the future research focuses are also presented. 展开更多
关键词 electrochemical energy storage information material portable electronic device rechargeable battery
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部