期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Reduced He ion irradiation damage in ZrC-based high-entropy ceramics 被引量:3
1
作者 Xiao-Ting Xin weichao bao +7 位作者 Xin-Gang Wang Xiao-Jie Guo Ying Lu Chenxi Zhu Ji-Xuan Liu Qiang Li Fangfang Xu Guo-Jun Zhang 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2023年第5期916-929,共14页
Excellent irradiation resistance is the basic property of nuclear materials to keep nuclear safety.The high-entropy design has great potential to improve the irradiation resistance of the nuclear materials,which has b... Excellent irradiation resistance is the basic property of nuclear materials to keep nuclear safety.The high-entropy design has great potential to improve the irradiation resistance of the nuclear materials,which has been proven in alloys.However,whether or not high entropy can also improve the irradiation resistance of ceramics,especially the mechanism therein still needs to be uncovered.In this work,the irradiation and helium(He)behaviors of zirconium carbide(ZrC)-based high-entropy ceramics(HECs),i.e.,(Zr_(0.2)Ti_(0.2)Nb_(0.2)Ta_(0.2)W_(0.2))C,were investigated and compared with those of ZrC under 540 keV He ion irradiation with a dose of 1×10^(17) cm^(−2) at room temperature and subsequent annealing.Both ZrC and(Zr_(0.2)Ti_(0.2)Nb_(0.2)Ta_(0.2)W_(0.2))C maintain lattice integrity after irradiation,while the irradiation-induced lattice expansion is smaller in(Zr_(0.2)Ti_(0.2)Nb_(0.2)Ta_(0.2)W_(0.2))C(0.78%)with highly thermodynamic stability than that in ZrC(0.91%).After annealing at 800℃,ZrC exhibits the residual _(0.2)0%lattice expansion,while(Zr_(0.2)Ti_(0.2)Nb_(0.2)Ta_(0.2)W_(0.2))C shows only 0.10%.Full recovery of the lattice parameter(a)is achieved for both ceramics after annealing at 1500℃.In addition,the high entropy in the meantime brings about the favorable structural evolution phenomena including smaller He bubbles that are evenly distributed without abnormal coarsening or aggregation,segregation,and shorter and sparser dislocation.The excellent irradiation resistance is related to the high-entropy-induced phase stability,sluggish diffusion of defects,and stress dispersion along with the production of vacancies by valence compensation.The present study indicates a high potential of high-entropy carbides in irradiation resistance applications. 展开更多
关键词 high-entropy carbides zirconium carbide(ZrC) irradiation damage dislocations helium(He)bubbles
原文传递
Destroying pathogen-tumor symbionts synergizing with catalytic therapy of colorectal cancer by biomimetic protein-supported single-atom nanozyme 被引量:1
2
作者 Xinyue Wang Qian Chen +8 位作者 Yefei Zhu Kairuo Wang Yongliang Chang Xiawei Wu weichao bao Tongcheng Cao Hangrong Chen Yang Zhang Huanlong Qin 《Signal Transduction and Targeted Therapy》 SCIE CSCD 2023年第8期3837-3848,共12页
The crucial role of intratumoral bacteria in the progression of cancer has been gradually recognized with the development of sequencing technology.Several intratumoral bacteria which have been identified as pathogens ... The crucial role of intratumoral bacteria in the progression of cancer has been gradually recognized with the development of sequencing technology.Several intratumoral bacteria which have been identified as pathogens of cancer that induce progression,metastasis,and poor outcome of cancer,while tumor vascular networks and immunosuppressive microenvironment provide shelters for pathogens localization.Thus,the mutually-beneficial interplay between pathogens and tumors,named“pathogentumor symbionts”,is probably a potential therapeutic site for tumor treatment.Herein,we proposed a destroying pathogen-tumor symbionts strategy that kills intratumoral pathogens,F.nucleatum,to break the symbiont and synergize to kill colorectal cancer(CRC)cells.This strategy was achieved by a groundbreaking protein-supported copper single-atom nanozyme(BSA-Cu SAN)which was inspired by the structures of native enzymes that are based on protein,with metal elements as the active center.BSA-Cu SAN can exert catalytic therapy by generating reactive oxygen species(ROS)and depleting GSH.The in vitro and in vivo experiments demonstrate that BSA-Cu SAN passively targets tumor sites and efficiently scavenges F.nucleatum in situ to destroy pathogentumor symbionts.As a result,ROS resistance of CRC through elevated autophagy mediated by F.nucleatum was relieved,contributing to apoptosis of cancer cells induced by intracellular redox imbalance generated by BSA-Cu SAN.Particularly,BSA-Cu SAN experiences renal clearance,avoiding long-term systemic toxicity.This work provides a feasible paradigm for destroying pathogen-tumor symbionts to block intratumoral pathogens interplay with CRC for antitumor therapy and an optimized trail for the SAN catalytic therapy by the clearable protein-supported SAN. 展开更多
关键词 COLORECTAL ELEVATED CATALYTIC
原文传递
Structural integrity and damage of ZrB_(2) ceramics after 4 MeV Au ions irradiation 被引量:1
3
作者 weichao bao Stuart Robertson +4 位作者 Jia-Wei Zhao Ji-Xuan Liu Houzheng Wu Guo-Jun Zhang Fangfang Xu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第13期223-230,共8页
Ultra-high temperature ceramics have been considered as good candidates for plasma facing materials due to their combination of high melting point,high strength and hardness,high thermal conductivity as well as good c... Ultra-high temperature ceramics have been considered as good candidates for plasma facing materials due to their combination of high melting point,high strength and hardness,high thermal conductivity as well as good chemical inertness.In this study,zirconium diboride has been chosen to investigate its irradiation damage behavior.Irradiated by 4 MeV Au^(2+)with a total fluence of 2.5×10^(16)cm^(-2),zirconium diboride ceramic shows substantial resilience to irradiation-induced damage with its structural integrity well maintained but mild damage at lattice level.Grazing incident X-ray diffraction evidences no change of the hexagonal structure in the irradiated region but its lattice parameter a increased and c decreased,giving a volume shrinkage of 0.46%.Density functional theory calculation shows that such lattice shrinkage corresponds to a non-stoichiometric compound as ZrB1.97.Electron energy-loss spectroscopy in a transmission electron microscope revealed an increase of valence electrons in zirconium,suggesting boron vacancies were indeed developed by the irradiation.Alo ng the irradiation depth,long dislocations were observed inside top layer with a depth of 750 nm where the implanted Au ions reached the peak concentration.Underneath the top layer,a high density of Frank dislocations is formed by the cascade collision down to a depth of 1150 nm.All the features show the potential of ZrB_(2) to be used as structural material in nuclear system. 展开更多
关键词 Zirconium diboride Heavy ion irradiation Boron vacancy DISLOCATION Structure integration
原文传递
Influence of equiatomic Zr/(Ti,Nb)substitution on microstructure and ultra-high strength of(Ti,Zr,Nb)C medium-entropy ceramics at 1900℃ 被引量:1
4
作者 Qingqing YANG Xingang WANG +6 位作者 weichao bao Ping WU Xiaofei WANG Xiaojie GUO Cheng ZHANG Guojun ZHANG Danyu JIANG 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2022年第9期1457-1465,共9页
High-temperature mechanical properties of medium-entropy carbide ceramics have attracted significant attention.Tailoring the microstructure is an effective way to improve these high-temperature mechanical properties,w... High-temperature mechanical properties of medium-entropy carbide ceramics have attracted significant attention.Tailoring the microstructure is an effective way to improve these high-temperature mechanical properties,which can be affected by the evolution of the enthalpy and entropy,as well as by lattice distortion and sluggish diffusion.In this study,the effects of equiatomic Zr/(Ti,Nb)substitution(Zr content of 10-40 at%)on the microstructure and high-temperature strength of(Ti,Zr,Nb)C medium-entropy ceramics were investigated.The grain size of the(Ti,Zr,Nb)C medium-entropy ceramics was refined from 9.4±3.7 to 1.1±0.4μm with an increase in the Zr content from 10.0 to 33.3 at%.A further increase in the Zr content to 40 at%resulted in a slight increase in the grain size.At 1900℃,the(Ti,Zr,Nb)C medium-entropy ceramics with the Zr contents of 33.3 and 40 at%exhibited ultra-high flexural strengths of 875±43 and 843±71 MPa,respectively,which were higher than those of the transition metal carbides previously reported under similar conditions.Furthermore,relatively smooth grain boundaries,which were detected at a test temperature of 1000℃,transformed into curved and serrated boundaries as the temperature increased to 1900℃,which may be considered the primary reason for the improved high-temperature flexural strength.The associated mechanism was analyzed and discussed in detail. 展开更多
关键词 medium entropy mechanical property ultra-high temperature ceramics(UHTCs) nonequimolar compositions curved and serrated grain boundaries
原文传递
Effect of native carbon vacancies on evolution of defects in ZrC_(1-x)under He ion irradiation and annealing
5
作者 weichao bao Xin-Gang Wang +4 位作者 Ying Lu Ji-Xuan Liu Shikuan Sun Guo-Jun Zhang Fangfang Xu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第24期87-97,共11页
The dynamic study of radiation-induced defects with annealing is critical for the material design for nextgeneration nuclear energy systems.The native vacancy could affect the development of defects,which lacks study.... The dynamic study of radiation-induced defects with annealing is critical for the material design for nextgeneration nuclear energy systems.The native vacancy could affect the development of defects,which lacks study.In the present work,the as-hot pressed ZrC_(1-x)(x=0,0.15,0.3)ceramics which comprised crystallites of a few microns in size with different amounts of carbon vacancies were irradiated by 540 ke V He^(2+)ions at room temperature with a fluence of 1×10^(17)/cm^(2).The radiation-induced lattice expansion was found to be a common phenomenon in a sequence of ZrC_(0.85)≥ZrC_(1.0)>ZrC_(0.7).Both X-ray and electron diffractions confirmed maintenance of structural integrity without amorphization after irradiation.Inside the irradiated region,only“black-dot”type defects,i.e.,clusters of point defects were observed while no helium-induced cavities,cracks,or extended dislocations were detected.The as-irradiated ZrC_(1-x)were then annealed at different high temperatures.Upon annealing at 800℃,very tiny helium-induced cavities were found to be generated and the crystal lattice recovered to a great extent,especially for the sub-stoichiometric samples.While annealed at 1500℃,all the samples almost fully recovered the crystal lattices close to those of as-hot pressed ones.Meanwhile,large cavities and extended dislocations were generated.With increasing amount of native carbon vacancies,the size of cavities increased while the length and density of extended dislocations decreased.Inverse changes of lattice parameters during irradiation and annealing processes have been interpreted by the kinetics of defects.Finally,the correlation between native vacancies and damage behavior is discussed. 展开更多
关键词 Native carbon vacancies Zirconium carbide He ions irradiation Helium bubbles Dislocations
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部