Alkaline phosphatase(ALP)is widely expressed in human tissues.ALP plays an important role in the dephosphorylation of proteins and nucleic acids.Therefore,quantitative analysis of ALP plays a vital role in disease dia...Alkaline phosphatase(ALP)is widely expressed in human tissues.ALP plays an important role in the dephosphorylation of proteins and nucleic acids.Therefore,quantitative analysis of ALP plays a vital role in disease diagnosis and the development of biological detection methods.Terminal deoxynucleotidyl transferase(TdT)catalyzes continuous polymerization of deoxynucleotide triphosphates at the 30-OH end of single-stranded DNA in the absence of a template.In this study,we developed a highly sensitive and selective method based on TdT and endonuclease Ⅳ(Endo Ⅳ)to quantify ALP activity.After ALP hydrolyzes the 30-PO_(4) end of the substrate and generates 30-OH,TdT can effectively elongate the 30-OH end with deoxynucleotide adenine triphosphate(dATP)and produce a poly A tail,which can be detected by the poly T probes.Endo Ⅳ digests the AP site in poly T probes to generate a fluorescent signal and a new 30-OH end,leading to the generation of exponential fluorescence signal amplification.The substrate for TdT elongation was optimized,and a limit of detection of 4.3×10^(-3) U/L was achieved for ALP by the optimized substrate structure.This method can also detect ALP in the cell lysate of a single cell.This work has potential applications in disease diagnosis and biomedical detection.展开更多
We presented a low-abundance mutation detection method with lambda exonuclease and DNA threeway junction structure.The assistant strand in the DNA three-way junction structure could regulate the reaction system from t...We presented a low-abundance mutation detection method with lambda exonuclease and DNA threeway junction structure.The assistant strand in the DNA three-way junction structure could regulate the reaction system from the kinetics and thermodyna mics aspects.The optimization of the assista nt strand helps to improve the selectivity of the mutant-type DNA to the wild-type DNA about 35 times.Moreover,the cost of the optimization process could be saved by about 90%.The method was applied to the detection of a human ovarian cancer-related gene mutation BRCA1(rs1799949,c.2082 C>T).The limit of detection to the mutation abundance in the DNA three-way junction structure system(0.2%) was one order lower compared with that in the double-stranded DNA structure system(2%).The mutation abundance in different standard samples was quantitively measured,and the results were consistent with the initial abundance in the standard samples.展开更多
Immune checkpoint blockade(ICB),including anti-cytotoxic T-lymphocyte associated protein 4(CTLA-4),benefits only a limited number of patients with cancer.Understanding the in-depth regulatory mechanism of CTLA-4 prote...Immune checkpoint blockade(ICB),including anti-cytotoxic T-lymphocyte associated protein 4(CTLA-4),benefits only a limited number of patients with cancer.Understanding the in-depth regulatory mechanism of CTLA-4 protein stability and its functional significance may help identify ICB resistance mechanisms and assist in the development of novel immunotherapeutic modalities to improve ICB efficacy.Here,we identified that TNF receptor-associated factor 6(TRAF6)mediates Lys63-linked ubiquitination and subsequent lysosomal degradation of CTLA-4.Moreover,by using TRAF6-deficient mice and retroviral overexpression experiments,we demonstrated that TRAF6 promotes CTLA-4 degradation in a T-cell-intrinsic manner,which is dependent on the RING domain of TRAF6.This intrinsic regulatory mechanism contributes to CD8+T-cell-mediated antitumor immunity in vivo.Additionally,by using an OX40 agonist,we demonstrated that the OX40-TRAF6 axis is responsible for CTLA-4 degradation,thereby controlling antitumor immunity in both tumor-bearing mice and patients with cancer.Overall,our findings demonstrate that the OX40-TRAF6 axis promotes CTLA-4 degradation and is a potential therapeutic target for the improvement of T-cell-based immunotherapies.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant No.:21904045)the Fundamental Research Funds for the Central Universities(HUST:Grant No.:2019kfyXJJS169)Training Program of Innovation and Entrepreneurship for Undergraduates of Hubei Province(Grant No.:S202010487225).
文摘Alkaline phosphatase(ALP)is widely expressed in human tissues.ALP plays an important role in the dephosphorylation of proteins and nucleic acids.Therefore,quantitative analysis of ALP plays a vital role in disease diagnosis and the development of biological detection methods.Terminal deoxynucleotidyl transferase(TdT)catalyzes continuous polymerization of deoxynucleotide triphosphates at the 30-OH end of single-stranded DNA in the absence of a template.In this study,we developed a highly sensitive and selective method based on TdT and endonuclease Ⅳ(Endo Ⅳ)to quantify ALP activity.After ALP hydrolyzes the 30-PO_(4) end of the substrate and generates 30-OH,TdT can effectively elongate the 30-OH end with deoxynucleotide adenine triphosphate(dATP)and produce a poly A tail,which can be detected by the poly T probes.Endo Ⅳ digests the AP site in poly T probes to generate a fluorescent signal and a new 30-OH end,leading to the generation of exponential fluorescence signal amplification.The substrate for TdT elongation was optimized,and a limit of detection of 4.3×10^(-3) U/L was achieved for ALP by the optimized substrate structure.This method can also detect ALP in the cell lysate of a single cell.This work has potential applications in disease diagnosis and biomedical detection.
基金financially supported by the National Natural Science Foundation of China (Nos.21904045,21705053 and 81871732)the Fundamental Research Funds for the Central Universities (No.2019kfyXJJS169)National Training Program of Innovation and Entrepreneurship for Undergraduates (No. 201910487087)。
文摘We presented a low-abundance mutation detection method with lambda exonuclease and DNA threeway junction structure.The assistant strand in the DNA three-way junction structure could regulate the reaction system from the kinetics and thermodyna mics aspects.The optimization of the assista nt strand helps to improve the selectivity of the mutant-type DNA to the wild-type DNA about 35 times.Moreover,the cost of the optimization process could be saved by about 90%.The method was applied to the detection of a human ovarian cancer-related gene mutation BRCA1(rs1799949,c.2082 C>T).The limit of detection to the mutation abundance in the DNA three-way junction structure system(0.2%) was one order lower compared with that in the double-stranded DNA structure system(2%).The mutation abundance in different standard samples was quantitively measured,and the results were consistent with the initial abundance in the standard samples.
基金supported by the National Natural Science Foundation of China(82071803,82241217,and 82271811)Fundamental Research Funds for the Central Universities(2021GCRC037)Project Funded by China Postdoctoral Science Foundation(2021M691155).
文摘Immune checkpoint blockade(ICB),including anti-cytotoxic T-lymphocyte associated protein 4(CTLA-4),benefits only a limited number of patients with cancer.Understanding the in-depth regulatory mechanism of CTLA-4 protein stability and its functional significance may help identify ICB resistance mechanisms and assist in the development of novel immunotherapeutic modalities to improve ICB efficacy.Here,we identified that TNF receptor-associated factor 6(TRAF6)mediates Lys63-linked ubiquitination and subsequent lysosomal degradation of CTLA-4.Moreover,by using TRAF6-deficient mice and retroviral overexpression experiments,we demonstrated that TRAF6 promotes CTLA-4 degradation in a T-cell-intrinsic manner,which is dependent on the RING domain of TRAF6.This intrinsic regulatory mechanism contributes to CD8+T-cell-mediated antitumor immunity in vivo.Additionally,by using an OX40 agonist,we demonstrated that the OX40-TRAF6 axis is responsible for CTLA-4 degradation,thereby controlling antitumor immunity in both tumor-bearing mice and patients with cancer.Overall,our findings demonstrate that the OX40-TRAF6 axis promotes CTLA-4 degradation and is a potential therapeutic target for the improvement of T-cell-based immunotherapies.