期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
覆尘滤袋综合渗透率的分形求解
1
作者 蔡卫东 谭志洪 +2 位作者 熊桂龙 刘丽冰 魏林生 《过程工程学报》 CAS CSCD 北大核心 2019年第5期997-1005,共9页
基于分形理论计算滤袋及滤饼构成的综合渗透率,描述其渗流特性。结合滤饼扫描电镜实验与图像处理技术分析滤饼孔隙结构;利用改进的毛细管模型近似模拟滤饼孔隙通道,根据流体动力学原理得到了滤饼渗透率的分形表达式,并由达西定律计算得... 基于分形理论计算滤袋及滤饼构成的综合渗透率,描述其渗流特性。结合滤饼扫描电镜实验与图像处理技术分析滤饼孔隙结构;利用改进的毛细管模型近似模拟滤饼孔隙通道,根据流体动力学原理得到了滤饼渗透率的分形表达式,并由达西定律计算得覆尘滤袋综合渗透率,并用其对袋式除尘器流场压力分布进行数值模拟。结果表明,滤饼孔隙结构具有自相似特点。覆尘滤袋综合渗透率为(1.615~4.784)×10^-12 m^2,模拟所得的滤袋内外压差与实验结果的相对误差小于26%。覆尘滤袋综合渗透率计算方法合理,可较好地描述复合多孔介质的渗流特性。 展开更多
关键词 分形理论 袋式除尘器 滤饼 渗透率 数值模拟
原文传递
Texture image classification with discriminative neural networks 被引量:1
2
作者 Yang Song Qing Li +2 位作者 Dagan Feng Ju Jia Zou weidong cai 《Computational Visual Media》 2016年第4期367-377,共11页
Texture provides an important cue for many computer vision applications, and texture image classification has been an active research area over the past years. Recently, deep learning techniques using convolutional ne... Texture provides an important cue for many computer vision applications, and texture image classification has been an active research area over the past years. Recently, deep learning techniques using convolutional neural networks(CNN) have emerged as the state-of-the-art: CNN-based features provide a significant performance improvement over previous handcrafted features. In this study, we demonstrate that we can further improve the discriminative power of CNN-based features and achieve more accurate classification of texture images. In particular, we have designed a discriminative neural network-based feature transformation(NFT) method, with which the CNN-based features are transformed to lower dimensionality descriptors based on an ensemble of neural networks optimized for the classification objective. For evaluation, we used three standard benchmark datasets(KTH-TIPS2, FMD, and DTD)for texture image classification. Our experimental results show enhanced classification performance over the state-of-the-art. 展开更多
关键词 texture classification neural networks feature learning feature transformation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部