Magnetoresistance(MR)phenomenon couples the electron transport with magnetic field,which has been at the forefront of condensed matter physics and materials science.Large-MR behaviors are of particularly importance fo...Magnetoresistance(MR)phenomenon couples the electron transport with magnetic field,which has been at the forefront of condensed matter physics and materials science.Large-MR behaviors are of particularly importance for magnetic sensor and information memory applications,and their scarcity has aroused intensive research.Moreover,due to the different physical origins,combination of large positive and negative MR(pMR and nMR)in one single compound has rarely been reported.In present work,we achieved a coexistence of large pMR and nMR in Cr_(2)Si_(2)Te_(6) ferromagnetic semiconductor single crystal with different field configurations.Specifically,a large nMR of about -60% was obtained under the in-plane field,while a large pMR higher than 1000% took over in the out-of-plane direction.We attribute this field direction-sensitive dualistic large MR behavior to the competition and cooperation effect from the ferromagnetic interaction,orbital scattering and electronic correlation that coexist in Cr_(2)Si_(2)Te_(6),which contribute to n MR,pMR,and nMR,respectively,in dominated temperature and field ranges,and show different weights under different field directions.The elucidated multiple MR mechanism in this ferromagnetic semiconductor will shed light on the pursuit of coexistence of large p MR and nMR for field-sensitive device applications.展开更多
基金financially supported by the National Natural Science Foundation of China(U1832142 and 21805269)the National Key R&D Program of China(2018YFB0703602 and 2017YFA0303500)+6 种基金the Youth Innovation Promotion Association,CAS(Y202092)the Fundamental Research Funds for the Central Universities(WK2340000094)The University Synergy Innovation Program of Anhui Province(GXXT-2020-003)Anhui Provincial Natural Science Foundation(1808085QA08)the Key Research Program of Frontier Sciences(QYZDYSSW-SLH011)China Postdoctoral Science Foundation(2017M620261,2019TQ0293 and 2020M671868)the National Synchrotron Radiation Laboratory Joint funds of University of Science and Technology of China(KY2060000156 and KY2340000114)。
文摘Magnetoresistance(MR)phenomenon couples the electron transport with magnetic field,which has been at the forefront of condensed matter physics and materials science.Large-MR behaviors are of particularly importance for magnetic sensor and information memory applications,and their scarcity has aroused intensive research.Moreover,due to the different physical origins,combination of large positive and negative MR(pMR and nMR)in one single compound has rarely been reported.In present work,we achieved a coexistence of large pMR and nMR in Cr_(2)Si_(2)Te_(6) ferromagnetic semiconductor single crystal with different field configurations.Specifically,a large nMR of about -60% was obtained under the in-plane field,while a large pMR higher than 1000% took over in the out-of-plane direction.We attribute this field direction-sensitive dualistic large MR behavior to the competition and cooperation effect from the ferromagnetic interaction,orbital scattering and electronic correlation that coexist in Cr_(2)Si_(2)Te_(6),which contribute to n MR,pMR,and nMR,respectively,in dominated temperature and field ranges,and show different weights under different field directions.The elucidated multiple MR mechanism in this ferromagnetic semiconductor will shed light on the pursuit of coexistence of large p MR and nMR for field-sensitive device applications.