Photodetectors with long detection distances and fast response are important media in constructing a non-contact human-machine interface for the Masterly Internet of Things(MIT).All-inorganic perovskites have excellen...Photodetectors with long detection distances and fast response are important media in constructing a non-contact human-machine interface for the Masterly Internet of Things(MIT).All-inorganic perovskites have excellent optoelectronic performance with high moisture and oxygen resistance,making them one of the promising candidates for high-performance photodetectors,but a simple,low-cost and reliable fabrication technology is urgently needed.Here,a dual-function laser etching method is developed to complete both the lyophilic split-ring structure and electrode patterning.This novel split-ring structure can capture the perovskite precursor droplet efficiently and achieve the uniform and compact deposition of CsPbBr3 films.Furthermore,our devices based on laterally conducting split-ring structured photodetectors possess outstanding performance,including the maximum responsivity of 1.44×105 mA W^(−1),a response time of 150μs in 1.5 kHz and one-unit area<4×10-2 mm2.Based on these split-ring photodetector arrays,we realized three-dimensional gesture detection with up to 100 mm distance detection and up to 600 mm s^(−1) speed detection,for low-cost,integrative,and non-contact human-machine interfaces.Finally,we applied this MIT to wearable and flexible digital gesture recognition watch panel,safe and comfortable central controller integrated on the car screen,and remote control of the robot,demonstrating the broad potential applications.展开更多
A ternary complex combining dual-phase perovskites-Cs4PbBr6/CsPbBr3(DP-CPB) with ZnSe micropshere s(ZnSe-DP-CPB) was succes s fully prepared using supersaturated recrystallization technique at room temperature.It was ...A ternary complex combining dual-phase perovskites-Cs4PbBr6/CsPbBr3(DP-CPB) with ZnSe micropshere s(ZnSe-DP-CPB) was succes s fully prepared using supersaturated recrystallization technique at room temperature.It was showed that the DP-CPB composites were partially embedded in ZnSe microsphere composed with ZnSe NCs.The light absorption range of ZnSe-DP-CPB composites was extended from visible to near infrared light.Highly enhanced luminescence from ZnSe-DP-CPB composite was observed and the excitation power-dependent photoluminescence showed that the recombination involves excitons.The recombination lifetimes of the ternary composites increased compared with DP-CPB composite,indicating that the non-radiative combination was suppressed which maybe possibly due to the decrease of both bulk and surface defects,owing to the passivation of ZnSe,as well as the suitable band alignments of these three components.The ternary complex also showed improved stability of photoluminescence(PL),which opens a newavenue for enhancing the stability of PL and optoelectronic applications for semiconductor-perovskite composites.展开更多
Dihydronicotinamide adenine dinucleotide(NADH)is an important enzyme in all living cells,which is found to be abnormally expressed in cancer cells.Since it is redox-active,an electrochemical detection method would be ...Dihydronicotinamide adenine dinucleotide(NADH)is an important enzyme in all living cells,which is found to be abnormally expressed in cancer cells.Since it is redox-active,an electrochemical detection method would be suitable for monitoring its concentration in biological fluids.Here we present a strategy for specific determination of NADH in real human serum by using RhIr@MoS2 nanohybrids based microsensor.To implement the protocol,RhIr nanocrysrals are in-situ grown onto MoS2 interlayers forming a nanohybrid structure(RhIr@MoS2).After being locally deposited on an electrochemical microsensor,it could be used for the analysis of NADH.The developed RhIr@MoS2 nanohybrids based microsensor possesses the ability for analyzing NADH at the applied potential of 0.07 V(much lower than most reported values).The detection limit is evaluated as low as 1 nmol/L even in bovine serum albumin(BSA)media.In addition,the sampling analysis of human serum from cancer patients and health controls shows that the microsensor displays good diagnostic sensitivity and specificity,illustrating that this developed detection technique is a relatively accurate method for measuring NADH in biological fluids.The proposed electrochemical microsensor assay also owns the benefits of convenience,disposable and easy processing,which make it a great possibility for future point-of-care cancer diagnosis.展开更多
基金support by the Key Research Project of Zhejiang Laboratory(N.O.2021PE0AC02)the National Natural Science Foundation of China(N.O.11674210)the Project of Hetao Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone(HZQB-KCZYB-2020083).
文摘Photodetectors with long detection distances and fast response are important media in constructing a non-contact human-machine interface for the Masterly Internet of Things(MIT).All-inorganic perovskites have excellent optoelectronic performance with high moisture and oxygen resistance,making them one of the promising candidates for high-performance photodetectors,but a simple,low-cost and reliable fabrication technology is urgently needed.Here,a dual-function laser etching method is developed to complete both the lyophilic split-ring structure and electrode patterning.This novel split-ring structure can capture the perovskite precursor droplet efficiently and achieve the uniform and compact deposition of CsPbBr3 films.Furthermore,our devices based on laterally conducting split-ring structured photodetectors possess outstanding performance,including the maximum responsivity of 1.44×105 mA W^(−1),a response time of 150μs in 1.5 kHz and one-unit area<4×10-2 mm2.Based on these split-ring photodetector arrays,we realized three-dimensional gesture detection with up to 100 mm distance detection and up to 600 mm s^(−1) speed detection,for low-cost,integrative,and non-contact human-machine interfaces.Finally,we applied this MIT to wearable and flexible digital gesture recognition watch panel,safe and comfortable central controller integrated on the car screen,and remote control of the robot,demonstrating the broad potential applications.
基金financial support the Key Research Project of Zhejiang Laboratory(2021PE0AC02)the National Natural Science Foundation of China(11704239,61922053,and 11674210)。
基金supported by National Natural Science Foundation of China(Nos.61927806,61474067)the State Key Laboratory of Transducer Technology of China(No.SKT1806)。
文摘A ternary complex combining dual-phase perovskites-Cs4PbBr6/CsPbBr3(DP-CPB) with ZnSe micropshere s(ZnSe-DP-CPB) was succes s fully prepared using supersaturated recrystallization technique at room temperature.It was showed that the DP-CPB composites were partially embedded in ZnSe microsphere composed with ZnSe NCs.The light absorption range of ZnSe-DP-CPB composites was extended from visible to near infrared light.Highly enhanced luminescence from ZnSe-DP-CPB composite was observed and the excitation power-dependent photoluminescence showed that the recombination involves excitons.The recombination lifetimes of the ternary composites increased compared with DP-CPB composite,indicating that the non-radiative combination was suppressed which maybe possibly due to the decrease of both bulk and surface defects,owing to the passivation of ZnSe,as well as the suitable band alignments of these three components.The ternary complex also showed improved stability of photoluminescence(PL),which opens a newavenue for enhancing the stability of PL and optoelectronic applications for semiconductor-perovskite composites.
基金supported by National Key R&D Program of China(No.2016YFA0200800)Shanghai Science and Technology Innovation Action Plan(No.19520744200)+1 种基金Natural Science Foundation of Shanghai(Nos.17ZR1410000,18ZR1415400)the financial support of State Key Laboratory of Transducer Technology of China(No.SKT1806)。
文摘Dihydronicotinamide adenine dinucleotide(NADH)is an important enzyme in all living cells,which is found to be abnormally expressed in cancer cells.Since it is redox-active,an electrochemical detection method would be suitable for monitoring its concentration in biological fluids.Here we present a strategy for specific determination of NADH in real human serum by using RhIr@MoS2 nanohybrids based microsensor.To implement the protocol,RhIr nanocrysrals are in-situ grown onto MoS2 interlayers forming a nanohybrid structure(RhIr@MoS2).After being locally deposited on an electrochemical microsensor,it could be used for the analysis of NADH.The developed RhIr@MoS2 nanohybrids based microsensor possesses the ability for analyzing NADH at the applied potential of 0.07 V(much lower than most reported values).The detection limit is evaluated as low as 1 nmol/L even in bovine serum albumin(BSA)media.In addition,the sampling analysis of human serum from cancer patients and health controls shows that the microsensor displays good diagnostic sensitivity and specificity,illustrating that this developed detection technique is a relatively accurate method for measuring NADH in biological fluids.The proposed electrochemical microsensor assay also owns the benefits of convenience,disposable and easy processing,which make it a great possibility for future point-of-care cancer diagnosis.