Femtosecond laser inscription or writing has been recognized as a powerful technique to engineer various materials toward a number of applications.By efficient modification of refractive indices of dielectric crystals...Femtosecond laser inscription or writing has been recognized as a powerful technique to engineer various materials toward a number of applications.By efficient modification of refractive indices of dielectric crystals,optical waveguides with diverse configurations have been produced by femtosecond laser writing.The waveguiding properties depend not only on the parameters of the laser writing but also on the nature of the crystals.The mode profile tailoring and polarization engineering are realizable by selecting appropriate fabrication conditions.In addition,regardless of the complexity of crystal refractive index changes induced by ultrafast pulses,several three-dimensional geometries have been designed and implemented that are useful for the fabrication of laser-written photonic chips.Some intriguing devices,e.g.,waveguide lasers,wavelength converters,and quantum memories,have been made,exhibiting potential for applications in various areas.Our work gives a concise review of the femtosecond laser-inscribed waveguides in dielectric crystals and focuses on the recent advances of this research area,including the fundamentals,fabrication,and selected photonic applications.展开更多
The anionic redox chemistry(O^2-→O^-)in P2-type sodium-ion battery cathodes has attracted much attention.However,determining how to tune the anionic redox reaction is still a major challenge.Herein,we tune the activi...The anionic redox chemistry(O^2-→O^-)in P2-type sodium-ion battery cathodes has attracted much attention.However,determining how to tune the anionic redox reaction is still a major challenge.Herein,we tune the activity and reversibility of both the anionic and cationic redox reactions of Na0.67Mn0.5Fe0.5O2 though an integrated strategy that combines the advantages of Li2SiO3 coating,Li doping and Si doping,and the initial capacity,rate performance and cycling stability are significantly improved.The in-depth modulation mechanism is revealed by means of neutron diffraction,X-ray absorption spectroscopy,in situ X-ray diffraction,electron paramagnetic resonance spectroscopy,first-principles calculations and so on.The Li2SiO3 coating alleviates the side reactions and enhances the cycling stability.Si^4+doping lowers the Na^+diffusion barrier due to the expanded interlayer spacing.Additionally,Si^4+doping improves the structural stability,oxygen redox activity and reversibility.Li^+doping in Na sites further increases the structure stability.The electron density maps confirm the greater activity of Na and O in the modified sample.Nuclear density maps and bond-valence energy landscapes identify the Na^+migration pathway from Nae site to Naf site(the positions of the Na ions in the crystal structure).The proposed insights into the modulation mechanism of the anionic and cationic redox chemistry are also instructive for designing other oxide-based cathode materials.展开更多
FTIR absorption spectra indicate that H^+can easily enter the crystal structure and form OH^-centers in Er:Yb:YCOB and O-H bonds prefer to lie in the a-c plane.Within our current studied concentration level,crystal sa...FTIR absorption spectra indicate that H^+can easily enter the crystal structure and form OH^-centers in Er:Yb:YCOB and O-H bonds prefer to lie in the a-c plane.Within our current studied concentration level,crystal samples with higher OH-abso rption coefficie nts demonstrate stro nger fluo rescence intensity and longer fluorescence lifetime at 1535 nm.As the stretching vibration energy of OH-group approximately corresponds to the energy gap between the 4 I11/2 and 4 I13/2 levels of Er^3+,and thus,OH^-ions can shorten the fluorescence lifetime of Er^3+-4I11/2 level by the phonon-assisted cross-relaxation process between the Er^3+and OH-ions.Our curre nt results confirm that a certain conte nt of OH ions can enhance the ene rgy transfer process from Yb^3+to Er^3+and subsequently promote fluorescence output in 1.5-1.6μm.展开更多
A new organic crystal of 4-N, N-dimethylamino-4'-N'-methyl-stilbazolium benzene sulfonate (DASBS) was synthesized and characterized for the first time. It is a derivative of 4-N, N-dimethylamino-4'-N'-methyl-sti...A new organic crystal of 4-N, N-dimethylamino-4'-N'-methyl-stilbazolium benzene sulfonate (DASBS) was synthesized and characterized for the first time. It is a derivative of 4-N, N-dimethylamino-4'-N'-methyl-stilbazolium tosylate (DAST) with the benzene sulfonate replacing p-toluenesulfonate. Single crystal XRD demonstrated that the crystal structure of DASBS. H20 was triclinic. The thermal analysis of this new crystal was also conducted, and the melting point was obtained to be 232℃.展开更多
Cobalt sulfides are considered as promising candidates for lithium-ion battery(LIB)anode materials with high energy densities.Their energy storage mechanism is widely understood to involve the traditional intercalatio...Cobalt sulfides are considered as promising candidates for lithium-ion battery(LIB)anode materials with high energy densities.Their energy storage mechanism is widely understood to involve the traditional intercalation and conversion reaction.However,these conventional mechanisms are unable to explain the storage capacities of certain materials which exceed the theoretical limit.Here,utilizing advanced in situ magnetometry to detect the magnetization evolution of Co_(1-x) S LIBs in real time,it is demonstrated that the Co-catalytic lithium storage process and interfacial space charge storage mechanism are strongly related to the additional capacity of cobalt sulfides.During discharge,a Co/Li_(2) S interface is formed,wherein the Co nanoparticles and Li_(2) S could store a large amount of polarized electrons Li^(+),respectively.Subsequently,the electrons stored in Co are transferred to the polymeric film,forming radical anions and contributing extra capacity.These findings reveal the charge storage mechanisms of transition metal sulfides and highlight the critical role of magnetic testing in the investigation of energy storage mechanisms.展开更多
基金financially supported by the National Natural Science Foundation of China (Nos. 12174222 and 61775120)the Natural Science Foundation of Shandong Province (ZR2021ZD02)Taishan Scholars Program of Shandong Province
文摘Femtosecond laser inscription or writing has been recognized as a powerful technique to engineer various materials toward a number of applications.By efficient modification of refractive indices of dielectric crystals,optical waveguides with diverse configurations have been produced by femtosecond laser writing.The waveguiding properties depend not only on the parameters of the laser writing but also on the nature of the crystals.The mode profile tailoring and polarization engineering are realizable by selecting appropriate fabrication conditions.In addition,regardless of the complexity of crystal refractive index changes induced by ultrafast pulses,several three-dimensional geometries have been designed and implemented that are useful for the fabrication of laser-written photonic chips.Some intriguing devices,e.g.,waveguide lasers,wavelength converters,and quantum memories,have been made,exhibiting potential for applications in various areas.Our work gives a concise review of the femtosecond laser-inscribed waveguides in dielectric crystals and focuses on the recent advances of this research area,including the fundamentals,fabrication,and selected photonic applications.
基金supported by the National Natural Science Foundation of China(11975238 and 11575192)the Scientific Instrument Developing Project(ZDKYYQ20170001)+3 种基金the International Partnership Program(211211KYSB20170060 and 211211KYSB20180020)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB28000000)the Natural Science Foundation of Beijing Municipality(2182082)The support from University of Chinese Academy of Sciences is also appreciated。
文摘The anionic redox chemistry(O^2-→O^-)in P2-type sodium-ion battery cathodes has attracted much attention.However,determining how to tune the anionic redox reaction is still a major challenge.Herein,we tune the activity and reversibility of both the anionic and cationic redox reactions of Na0.67Mn0.5Fe0.5O2 though an integrated strategy that combines the advantages of Li2SiO3 coating,Li doping and Si doping,and the initial capacity,rate performance and cycling stability are significantly improved.The in-depth modulation mechanism is revealed by means of neutron diffraction,X-ray absorption spectroscopy,in situ X-ray diffraction,electron paramagnetic resonance spectroscopy,first-principles calculations and so on.The Li2SiO3 coating alleviates the side reactions and enhances the cycling stability.Si^4+doping lowers the Na^+diffusion barrier due to the expanded interlayer spacing.Additionally,Si^4+doping improves the structural stability,oxygen redox activity and reversibility.Li^+doping in Na sites further increases the structure stability.The electron density maps confirm the greater activity of Na and O in the modified sample.Nuclear density maps and bond-valence energy landscapes identify the Na^+migration pathway from Nae site to Naf site(the positions of the Na ions in the crystal structure).The proposed insights into the modulation mechanism of the anionic and cationic redox chemistry are also instructive for designing other oxide-based cathode materials.
基金Project supported by the National Natural Science Foundation of China(11204148,11374170)Major Basic Research Projects of Shandong Natural Science Foundation(ZR2018ZB0650)+4 种基金China Postdoctoral Science Foundation(2015M580573)the Applied Basic Research Programs for Youths of Qingdao(15-9-1-52-JCH)Taishan Scholar Program of Shandong Provincethe Qingdao Postdoctoral Application Research Project(2015127)the Open Projects of State Key Laboratory of Rare-earth Resource Utilization(RERU2016015)
文摘FTIR absorption spectra indicate that H^+can easily enter the crystal structure and form OH^-centers in Er:Yb:YCOB and O-H bonds prefer to lie in the a-c plane.Within our current studied concentration level,crystal samples with higher OH-abso rption coefficie nts demonstrate stro nger fluo rescence intensity and longer fluorescence lifetime at 1535 nm.As the stretching vibration energy of OH-group approximately corresponds to the energy gap between the 4 I11/2 and 4 I13/2 levels of Er^3+,and thus,OH^-ions can shorten the fluorescence lifetime of Er^3+-4I11/2 level by the phonon-assisted cross-relaxation process between the Er^3+and OH-ions.Our curre nt results confirm that a certain conte nt of OH ions can enhance the ene rgy transfer process from Yb^3+to Er^3+and subsequently promote fluorescence output in 1.5-1.6μm.
文摘A new organic crystal of 4-N, N-dimethylamino-4'-N'-methyl-stilbazolium benzene sulfonate (DASBS) was synthesized and characterized for the first time. It is a derivative of 4-N, N-dimethylamino-4'-N'-methyl-stilbazolium tosylate (DAST) with the benzene sulfonate replacing p-toluenesulfonate. Single crystal XRD demonstrated that the crystal structure of DASBS. H20 was triclinic. The thermal analysis of this new crystal was also conducted, and the melting point was obtained to be 232℃.
基金supported partly by the National Natural Science Foundation of China(22179066)the Natural Science Foundation of Shandong Province(ZR2020MA073).
文摘Cobalt sulfides are considered as promising candidates for lithium-ion battery(LIB)anode materials with high energy densities.Their energy storage mechanism is widely understood to involve the traditional intercalation and conversion reaction.However,these conventional mechanisms are unable to explain the storage capacities of certain materials which exceed the theoretical limit.Here,utilizing advanced in situ magnetometry to detect the magnetization evolution of Co_(1-x) S LIBs in real time,it is demonstrated that the Co-catalytic lithium storage process and interfacial space charge storage mechanism are strongly related to the additional capacity of cobalt sulfides.During discharge,a Co/Li_(2) S interface is formed,wherein the Co nanoparticles and Li_(2) S could store a large amount of polarized electrons Li^(+),respectively.Subsequently,the electrons stored in Co are transferred to the polymeric film,forming radical anions and contributing extra capacity.These findings reveal the charge storage mechanisms of transition metal sulfides and highlight the critical role of magnetic testing in the investigation of energy storage mechanisms.