Photocatalytic anaerobic organic oxidation coupled with H_(2)evolution represents an advanced solar energy utilization strategy for the coproduction of clean fuel and fine chemicals.To achieve a high conversion effici...Photocatalytic anaerobic organic oxidation coupled with H_(2)evolution represents an advanced solar energy utilization strategy for the coproduction of clean fuel and fine chemicals.To achieve a high conversion efficiency,the smart design of efficient catalysts by the right combination of semiconductor light harvesters and cocatalyst is highly required.Herein,we report a composite photocatalyst composed of noble metal-free transition metal nitride Ni_(3)FeN decorated on 2D ultrathin ZnIn_(2)S_(4)(ZIS)nanosheets for selective oxidation of aromatic alcohols to aldehydes pairing with H_(2)production.In the composite,ultrathin ZIS serves as a light harvester that greatly shortens the diffusion length of photogenerated charges,while the metallic nitride Ni_(3)FeN acts as an advanced cocatalyst which not only captures the photoelectrons generated from the ultrathin ZIS to promote the charge separation,but also provides active sites to lower the overpotential and accelerate the H_(2)reduction.The best photocatalytic performance is found on ZIS/1.5%M-Ni_(3)FeN,which shows a H_(2)generation rate of 2427.9μmol g^(^(-1))h^(-1)and a benzaldehyde(BAD)production rate of 2460μmol g^(-1)h^(-1),about 7.8-fold as high as that of bare ZIS.This work is anticipated to endorse the exploration of transition metal nitrides as high-performance cocatalysts to promote the coupled photocatalytic organic transformation and H_(2)production.展开更多
基金National Natural Science Foundation of China(21905049 and 22178057)Natural Science Foundation of Fujian Province(2020J01201 and 2021J01197)Award Program for Minjiang Scholar Professorship.S.Liu thanks the support from the Fundamental Research Funds for the Central Universities(Grant No.DUT21RC(3)114).
文摘Photocatalytic anaerobic organic oxidation coupled with H_(2)evolution represents an advanced solar energy utilization strategy for the coproduction of clean fuel and fine chemicals.To achieve a high conversion efficiency,the smart design of efficient catalysts by the right combination of semiconductor light harvesters and cocatalyst is highly required.Herein,we report a composite photocatalyst composed of noble metal-free transition metal nitride Ni_(3)FeN decorated on 2D ultrathin ZnIn_(2)S_(4)(ZIS)nanosheets for selective oxidation of aromatic alcohols to aldehydes pairing with H_(2)production.In the composite,ultrathin ZIS serves as a light harvester that greatly shortens the diffusion length of photogenerated charges,while the metallic nitride Ni_(3)FeN acts as an advanced cocatalyst which not only captures the photoelectrons generated from the ultrathin ZIS to promote the charge separation,but also provides active sites to lower the overpotential and accelerate the H_(2)reduction.The best photocatalytic performance is found on ZIS/1.5%M-Ni_(3)FeN,which shows a H_(2)generation rate of 2427.9μmol g^(^(-1))h^(-1)and a benzaldehyde(BAD)production rate of 2460μmol g^(-1)h^(-1),about 7.8-fold as high as that of bare ZIS.This work is anticipated to endorse the exploration of transition metal nitrides as high-performance cocatalysts to promote the coupled photocatalytic organic transformation and H_(2)production.