期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effect of Heavy Metal Contamination on Soil Enzymes Activities
1
作者 Justice Ofori Yeboah Guangyu shi weilin shi 《Journal of Geoscience and Environment Protection》 2021年第6期135-154,共20页
Several enzymes catalyze much of the processes that exist in the soil. Enzymes in polluted soils are usually less active due to their exposure to heavy metals. The main goal of this study was to see how bioavailable t... Several enzymes catalyze much of the processes that exist in the soil. Enzymes in polluted soils are usually less active due to their exposure to heavy metals. The main goal of this study was to see how bioavailable types of Cd affected the behavior of catalase, urease, and dehydrogenases, as well as to compare the findings from naturally and artificially polluted samples. An experiment was conducted on two types of farmland (garden) soil: natural soil and soil that had been chemically polluted with Cd. The total content of heavy metal graded these soils as very highly polluted with Cd. The experiment was repeated four times to test the effects of increasing concentration and days (time). Extracellular enzymes from farmland performed enzymatic activity tests that lasted 6 to 29 days after soil sampling. After 0, 5, 10, 20, 30, and 45 days of incubation, soil samples were taken for testing respectively. However, even though no nutrient was added, dehydrogenase and urease activity increased as Cd concentration increased from 0 to 5 mg/L as the days passed. This is a result of enzymes engaging in respiratory and other living activities because of the low cadmium concentration and respiratory soil properties. However, there were significant variations in enzyme activity between naturally polluted and artificially contaminated soils. Dehydrogenases, Urease, and Catalase all showed a common pattern of enzyme sensitivity, which could be ordered as Dehydrogenase > Urease > Catalase. Dehydrogenase enzyme activity has been discovered to be more Cd resistant. 展开更多
关键词 Enzyme Activity DEHYDROGENASES CATALASE UREASE Soil Contamination Heavy Metal
下载PDF
EGCG通过STAT3抑制血管内皮细胞炎性因子表达 被引量:1
2
作者 石伟林 徐瑶 +2 位作者 宋如晦 郭辉 龙文林 《生物技术》 CAS 2018年第2期124-129,135,共7页
[目的]研究茶多酚EGCG对脂多糖(LPS)诱导的血管内皮细胞炎性因子表达的抑制作用及其机制。[方法]利用MTT和流式检测LPS和EGCG对血管内皮细胞的毒性作用,实时荧光定量PCR检测炎性因子mRNA的水平,多重液相蛋白定量技术检测炎性因子的蛋白... [目的]研究茶多酚EGCG对脂多糖(LPS)诱导的血管内皮细胞炎性因子表达的抑制作用及其机制。[方法]利用MTT和流式检测LPS和EGCG对血管内皮细胞的毒性作用,实时荧光定量PCR检测炎性因子mRNA的水平,多重液相蛋白定量技术检测炎性因子的蛋白表达,Western Blot检测STAT3及其磷酸化水平。[结果]EGCG最大浓度(100μmol/L)对血管内皮细胞无毒性;LPS处理可显著或极显著诱导炎性因子(TNF-α、IL-1β、IL-6和IL-8)在mRNA和蛋白水平的表达(P<0.05或P<0.01),LPS对炎性因子的促进作用具有剂量效应;25μmol/L或50μmol/L EGCG预处理能极显著抑制LPS诱导的血管内皮细胞炎性因子的表达(P<0.01),同时抑制LPS诱导的STAT3磷酸化;STAT3抑制剂能显著增强EGCG抗炎效果。[结论]EGCG通过STAT3通路抑制LPS诱导的血管内皮细胞炎症因子的表达。 展开更多
关键词 EGCG STAT3 血管内皮细胞 炎症反应
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部