期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Rational integration of defense and repair synergy on PEEK osteoimplants via biomimetic peptide clicking strategy 被引量:2
1
作者 Meng Li Jiaxiang Bai +13 位作者 Huaqiang Tao Li Hao weiling yin Xiaoxue Ren Ang Gao Ning Li Miao Wang Shiyuan Fang Yaozeng Xu Liang Chen Huilin Yang Huaiyu Wang Guoqing Pan Dechun Geng 《Bioactive Materials》 SCIE 2022年第2期309-324,共16页
Polyetheretherketone(PEEK)has been widely used as orthopedic and dental materials due to excellent mechanical and physicochemical tolerance.However,its biological inertness,poor osteoinduction,and weak antibacterial a... Polyetheretherketone(PEEK)has been widely used as orthopedic and dental materials due to excellent mechanical and physicochemical tolerance.However,its biological inertness,poor osteoinduction,and weak antibacterial activity make the clinical applications in a dilemma.Inspired by the mussel adhesion mechanism,here we reported a biomimetic surface strategy for rational integration and optimization of anti-infectivity and osteo-inductivity onto PEEK surfaces using a mussel foot proteins(Mfps)-mimic peptide with clickable azido terminal.The peptide enables mussel-like adhesion on PEEK biomaterial surfaces,leaving azido groups for the further steps of biofunctionalizations.In this study,antimicrobial peptide(AMP)and osteogenic growth peptide(OGP)were bioorthogonally clicked on the azido-modified PEEK biomaterials to obtain a dual-effect of host defense and tissue repair.Since bioorthogonal clicking allows precise collocation between AMP and OGP through changing their feeding molar ratios,an optimal PEEK surface was finally obtained in this research,which could long-term inhibit bacterial growth,stabilize bone homeostasis and facilitate interfacial bone regeneration.In a word,this upgraded mussel surface strategy proposed in this study is promising for the surface bioengineering of inert medical implants,in particular,achieving rational integration of multiple biofunctions to match clinical requirements. 展开更多
关键词 Surface biomodification POLYETHERETHERKETONE Anti-infectivity and osteo-inductivity Mussel adhesion Bioorthogonal chemistry
原文传递
Dynamic Colloidal Photonic Crystal Hydrogels with Self-Recovery and Injectability 被引量:1
2
作者 Yue Ma Peiyan He +6 位作者 Wanli Xie Qiang Zhang weiling yin Jianming Pan Miao Wang Xin Zhao Guoqing Pan 《Research》 SCIE EI CAS CSCD 2021年第1期575-585,共11页
Simulation of self-recovery and diversity of natural photonic crystal(PC)structures remain great challenges for artificial PC materials.Motivated by the dynamic characteristics of PC nanostructures,here,we present a n... Simulation of self-recovery and diversity of natural photonic crystal(PC)structures remain great challenges for artificial PC materials.Motivated by the dynamic characteristics of PC nanostructures,here,we present a new strategy for the design of hydrogel-based artificial PC materials with reversible interactions in the periodic nanostructures.The dynamic PC hydrogels,derived from self-assembled microgel colloidal crystals,were tactfully constructed by reversible crosslinking of adjacent microgels in the ordered structure via phenylboronate covalent chemistry.As proof of concept,three types of dynamic colloidal PC hydrogels with different structural colors were prepared.All the hydrogels showed perfect self-healing ability against physical damage.Moreover,dynamic crosslinking within the microgel crystals enabled shear-thinning injection of the PC hydrogels through a syringe(indicating injectability or printability),followed by rapid recovery of the structural colors.In short,in addition to the great significance in biomimicry of self-healing function of natural PC materials,our work provides a facile strategy for the construction of diversified artificial PC materials for different applications such as chem-/biosensing,counterfeit prevention,optical display,and energy conversion. 展开更多
关键词 materials REVERSIBLE CROSSLINKING
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部