Public safety incidents caused by bacterial infections have attracted widespread attention towards antibacterial textiles(fibers,fabrics,etc.).Nevertheless,it is still challenging to efficiently load inorganic nano-an...Public safety incidents caused by bacterial infections have attracted widespread attention towards antibacterial textiles(fibers,fabrics,etc.).Nevertheless,it is still challenging to efficiently load inorganic nano-antibacterial materials in polymer fibers.In this work,zirconium phosphate(ZrP,layered micro-nano materials)was utilized as a micro-nano carrier.The octadecyl triphenyl phosphonium bromide(OTP)was intercalated between the ZrP sheets by the ion exchange method to improve the carrier-polymer compatibility and the antibacterial performance.Through in-situ chemical reduction,the ultra-small nano-sized cuprous oxide(Cu_(2)O<5 nm)was loaded on the outer surface of ZrP to realize the uniform and stable dispersion of the Cu_(2)O on the carrier and improve the antibacterial performance.The ZrP nanosheets loaded with Cu_(2)O and OTP(Cu_(2)O@OZrP)had excellent antibacterial properties,and the antibacterial rate against E.coli,S.aureus and C.albicans was more than 99%.The intercalation amount of OTP in Cu_(2)O@OZrP can reach 16%,and the thermal stability was excellent and a significant increase in the Zeta potential.Indeed,the decomposition temperature was greater than 350℃,which was suitable for high-temperature melt processing of polymers.Consequently,we prepared PET/Cu_(2)O@OZrP fibers using polyethylene glycol terephthalate(PET),which accounts for 70%of the total chemical fibers,as the fiber matrix.PET/Cu_(2)O@OZrP fibers exhibited excellent mechanical property and antibacterial performance when the content of Cu_(2)O@OZrP was only 0.2%.The antibacterial rate against five types of bacteria including super bacteria(MRSA,VRE)was more than 99%.展开更多
基金This work was financially supported by the National Key Research and Development Program of China(Nos.2016YFA0201702 and 2016YFA0201700)the Program of Shanghai Academic/Technology Research Leader(No.20XD1433700)+2 种基金the International Cooperation Fund of the Science and Technology Commission of Shanghai Municipality(No.20520740800)the National Natural Science Foundation of China(Nos.51733002 and 52073047)China Postdoctoral Science Foundation(Nos.2019M661323 and 2020TQ0062)。
文摘Public safety incidents caused by bacterial infections have attracted widespread attention towards antibacterial textiles(fibers,fabrics,etc.).Nevertheless,it is still challenging to efficiently load inorganic nano-antibacterial materials in polymer fibers.In this work,zirconium phosphate(ZrP,layered micro-nano materials)was utilized as a micro-nano carrier.The octadecyl triphenyl phosphonium bromide(OTP)was intercalated between the ZrP sheets by the ion exchange method to improve the carrier-polymer compatibility and the antibacterial performance.Through in-situ chemical reduction,the ultra-small nano-sized cuprous oxide(Cu_(2)O<5 nm)was loaded on the outer surface of ZrP to realize the uniform and stable dispersion of the Cu_(2)O on the carrier and improve the antibacterial performance.The ZrP nanosheets loaded with Cu_(2)O and OTP(Cu_(2)O@OZrP)had excellent antibacterial properties,and the antibacterial rate against E.coli,S.aureus and C.albicans was more than 99%.The intercalation amount of OTP in Cu_(2)O@OZrP can reach 16%,and the thermal stability was excellent and a significant increase in the Zeta potential.Indeed,the decomposition temperature was greater than 350℃,which was suitable for high-temperature melt processing of polymers.Consequently,we prepared PET/Cu_(2)O@OZrP fibers using polyethylene glycol terephthalate(PET),which accounts for 70%of the total chemical fibers,as the fiber matrix.PET/Cu_(2)O@OZrP fibers exhibited excellent mechanical property and antibacterial performance when the content of Cu_(2)O@OZrP was only 0.2%.The antibacterial rate against five types of bacteria including super bacteria(MRSA,VRE)was more than 99%.