Fe-Al/Cr3C2 composite coatings were manufactured using high velocity arc spraying (HVAS) technology. The high temperature erosion, wear and corrosion resistance of the coatings were investigated. The coating propert...Fe-Al/Cr3C2 composite coatings were manufactured using high velocity arc spraying (HVAS) technology. The high temperature erosion, wear and corrosion resistance of the coatings were investigated. The coating properties such as bonding strength, porosity, hardness as well as microstructures were characterized. The results show that the coatings have relatively high heat tremble bond strength, hardness, and typical layer-shaped coatings' microstructures. With the rise of temperature, the coating erosion resistance increases too; the impingement angel does effects on erosion properties, and the erosion mechanism changes from ductile to brittle behaviors at 450℃. The coatings have good room temperature wear resistance and relatively good high temperature resistance. The wear mechanism of the coatings is peeling wear behavior. The coatings have excellent high temperature corrosion resistance because of the produce of oxides during corrosion.展开更多
The High Velocity Arc Spraying (HVAS) technology was used to prepare Fe-Al composite coatings by the adding of different elements into cored wires to obtain different Fe-Al coatings. The added compounds do great eff...The High Velocity Arc Spraying (HVAS) technology was used to prepare Fe-Al composite coatings by the adding of different elements into cored wires to obtain different Fe-Al coatings. The added compounds do great effect on the properties of the composite coatings. The microstructures and abrasive wear performances of the coatings were assessed by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and THT07-135 high temperature wear equipment. It was found that the adding of Cr3C2 can greatly increase the room temperature wear behavior, and Fe-Al/WC coatings have adapting periods at the beginning of wear experiment. With the rise of temperature, the wear resistance of Fe-AI/Cr3C2 coatings becomes bad from room temperature to 250℃, and then stable from 250℃ to 550℃; the wear resistance of Fe-Al/WC becomes well with the rise of temperature. The adding of Cr and Ni can also improve wear performances of Fe-Al composite coatings.展开更多
文摘Fe-Al/Cr3C2 composite coatings were manufactured using high velocity arc spraying (HVAS) technology. The high temperature erosion, wear and corrosion resistance of the coatings were investigated. The coating properties such as bonding strength, porosity, hardness as well as microstructures were characterized. The results show that the coatings have relatively high heat tremble bond strength, hardness, and typical layer-shaped coatings' microstructures. With the rise of temperature, the coating erosion resistance increases too; the impingement angel does effects on erosion properties, and the erosion mechanism changes from ductile to brittle behaviors at 450℃. The coatings have good room temperature wear resistance and relatively good high temperature resistance. The wear mechanism of the coatings is peeling wear behavior. The coatings have excellent high temperature corrosion resistance because of the produce of oxides during corrosion.
基金This work was financially supported by the National Natural Science Foundation of China (No.50235030, 50005024)
文摘The High Velocity Arc Spraying (HVAS) technology was used to prepare Fe-Al composite coatings by the adding of different elements into cored wires to obtain different Fe-Al coatings. The added compounds do great effect on the properties of the composite coatings. The microstructures and abrasive wear performances of the coatings were assessed by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and THT07-135 high temperature wear equipment. It was found that the adding of Cr3C2 can greatly increase the room temperature wear behavior, and Fe-Al/WC coatings have adapting periods at the beginning of wear experiment. With the rise of temperature, the wear resistance of Fe-AI/Cr3C2 coatings becomes bad from room temperature to 250℃, and then stable from 250℃ to 550℃; the wear resistance of Fe-Al/WC becomes well with the rise of temperature. The adding of Cr and Ni can also improve wear performances of Fe-Al composite coatings.