期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Unloading behaviors of the rare-earth magnesium alloy ZE10 sheet 被引量:4
1
作者 weiqin tang Jeong Yeon Lee +4 位作者 Huamiao Wang Dirk Steglich Dayong Li Yinghong Peng Peidong Wu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第3期927-936,共10页
Due to their low symmetry in crystal structure,low elastic modulus(~45 GPa)and low yielding stress,magnesium(Mg)alloys exhibit strong inelastic behaviors during unloading.As more and more Mg alloys are developed,their... Due to their low symmetry in crystal structure,low elastic modulus(~45 GPa)and low yielding stress,magnesium(Mg)alloys exhibit strong inelastic behaviors during unloading.As more and more Mg alloys are developed,their unloading behaviors were less investigated,especially for rare-earth(RE)Mg alloys.In the current work,the unloading behaviors of the RE Mg alloy ZE10 sheet is carefully studied by both mechanical tests and crystal plasticity modeling.In terms of the stress-strain curves,the inelastic strain,the chord modulus,and the active deformation mechanisms,the substantial anisotropy and the loading path dependency of the unloading behaviors of ZE10 sheets are characterized.The inelastic strains are generally larger under compressive Loading-Un Loading(L-UL)than under tensile L-UL,along the transverse direction(TD)than along the rolling direction(RD)under tensile L-UL,and along RD than along TD under compressive L-UL.The basal slip,twinning and de-twinning are found to be responsible for the unloading behaviors of ZE10 sheets. 展开更多
关键词 INELASTICITY Magnesium alloy RARE-EARTH Crystal plasticity TWINNING Detwinning
下载PDF
Analysis and Suppression of End Flare in AHSS Roll‑Formed Seat Rail
2
作者 Tianxia Zou Yang Liu +1 位作者 weiqin tang Dayong Li 《Automotive Innovation》 EI CSCD 2023年第3期404-413,共10页
Roll forming has been widely used to manufacture long channels with complex cross-sections.End flare,one of the typical shape errors,seriously affects the forming accuracy of roll-formed parts,especially using advance... Roll forming has been widely used to manufacture long channels with complex cross-sections.End flare,one of the typical shape errors,seriously affects the forming accuracy of roll-formed parts,especially using advanced high-strength steel.In this paper,the mechanism of end flare during the roll forming process of a high-strength automobile seat rail is analyzed.The roll forming process of an actual seat rail is designed.The finite element models of the roll forming process and cut-off springback are established to predict the deformation process and occurrence of end flare.Simulation results indicate that the uneven distribution of longitudinal and shear residual stress along the length of the part is the main reason for the end flare.Based on the simulation,two strategies are proposed to mitigate the end flare.Employing multiple bending processes in the transverse direction effectively balances the longitudinal and shear residual stress.Additionally,the longitudinal bending process can make the longitudinal residual stress in the roll-formed parts more homogenised.Finally,verification experiments are carried out,and the forming accuracy of the seat rail is significantly improved. 展开更多
关键词 Seat rail Roll forming End flare Residual stress Geometrical accuracy Finite element modelling
原文传递
Anion exchange membranes based on long side-chain quaternary ammonium-functionalized poly(arylene piperidinium)s for vanadium redox flow batteries
3
作者 Xuefu Che weiqin tang +2 位作者 Jianhao Dong David Aili Jingshuai Yang 《Science China Materials》 SCIE EI CAS CSCD 2022年第3期683-694,共12页
A new series of poly(arylene piperidinium)-based anion exchange membranes(AEMs)are proposed for vanadium redox flow batteries(VRFBs).The AEMs are fabricated via the Menshutkin reaction between poly(arylene piperidine)... A new series of poly(arylene piperidinium)-based anion exchange membranes(AEMs)are proposed for vanadium redox flow batteries(VRFBs).The AEMs are fabricated via the Menshutkin reaction between poly(arylene piperidine)without ether bonds in the backbone and various quaternizing agents,including iodomethane,1-bromopentane,and(5-bromopentyl)-trimethylammonium bromide.The properties of the AEMs are investigated in terms of sulfuric acid doping content,swelling,vanadium permeability,ion selectivity,area-specific resistance,mechanical properties,VRFB performance,and cyclic testing.Particularly,a method of measuring the H^(+) permeability of the AEM is developed.It demonstrates that the poly(p-terphenyl-N-methylpiperidine)-quaternary ammonium(PTP-QA)membrane with a QA cation-tethered alkyl chain exhibits high H^(+) permeability,resulting in low area resistance.Combined with its low vanadium permeance,the PTP-QA membrane achieves nearly 370 times higher ion selectivity than Nafion 115.The VRFB based on PTP-QA-based AEM displays high Coulombic efficiencies above 99% at current densities of 80-160 mA cm^(-2).The higher energy efficiency of 89.8% is achieved at 100 mA cm^(-2)(vs.73.6% for Nafion 115).Meanwhile,the PTPQA-based AEM shows good cycling stability and capacity retention,proving great potential as the ion exchange membrane for VRFB applications. 展开更多
关键词 vanadium redox flow battery anion exchange membrane poly(arylene piperidinium) quaternary ammonium H+permeability
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部