Herein,a novel direct Z-scheme photocatalyst was accomplished by hybridization of 0D MoS2 quantum dots(MSQDs)and 3D honeycomb-like conjugated triazine polymers(CTP)(namely,CTP-MSQD).The unique 0D/3D hierarchical struc...Herein,a novel direct Z-scheme photocatalyst was accomplished by hybridization of 0D MoS2 quantum dots(MSQDs)and 3D honeycomb-like conjugated triazine polymers(CTP)(namely,CTP-MSQD).The unique 0D/3D hierarchical structure significantly enhanced the exposure of active sites and light harvesting property,while the formed p-n junction enabled the direct strong interface coupling without the necessity of any mediators.The optimized CTP-MSQD3 exhibited continuously increased visible-light-driven photocatalytic activity and strong durability both in Cr(VI)reduction and H2 evolution,featured a rate of 0.069 min^(-1) and 1070μmol/(hr•g),respectively,which were 8 times than those of pure 3D-CTP(0.009 min^(−1) and 129μmol/(hr•g)).We believe that this work provides a promising photocatalyst system that combines a 0D/3D hierarchical structure and a Z-scheme charge flow for efficient and stable photocatalytic conversion.展开更多
基金supported by the Zhejiang Provincial Natural Science Foundation of China (No. LR21E080001)the National Natural Science Foundation of China (Nos. 21876156, 52000158, 22076168)+1 种基金the Zhejiang Provincial Ten Thousand Talent Program (No. 2018R52013)the Key Research and Development Plan of Zhajiang Province (No. 2021C03176)
文摘Herein,a novel direct Z-scheme photocatalyst was accomplished by hybridization of 0D MoS2 quantum dots(MSQDs)and 3D honeycomb-like conjugated triazine polymers(CTP)(namely,CTP-MSQD).The unique 0D/3D hierarchical structure significantly enhanced the exposure of active sites and light harvesting property,while the formed p-n junction enabled the direct strong interface coupling without the necessity of any mediators.The optimized CTP-MSQD3 exhibited continuously increased visible-light-driven photocatalytic activity and strong durability both in Cr(VI)reduction and H2 evolution,featured a rate of 0.069 min^(-1) and 1070μmol/(hr•g),respectively,which were 8 times than those of pure 3D-CTP(0.009 min^(−1) and 129μmol/(hr•g)).We believe that this work provides a promising photocatalyst system that combines a 0D/3D hierarchical structure and a Z-scheme charge flow for efficient and stable photocatalytic conversion.