Ensuring food safety is paramount worldwide.Developing effective detection methods to ensure food safety can be challenging owing to trace hazards,long detection time,and resource-poor sites,in addition to the matrix ...Ensuring food safety is paramount worldwide.Developing effective detection methods to ensure food safety can be challenging owing to trace hazards,long detection time,and resource-poor sites,in addition to the matrix effects of food.Personal glucose meter(PGM),a classic point-of-care testing device,possesses unique application advantages,demonstrating promise in food safety.Currently,many studies have used PGM-based biosensors and signal amplification technologies to achieve sensitive and specific detection of food hazards.Signal amplification technologies have the potential to greatly improve the analytical performance and integration of PGMs with biosensors,which is crucial for solving the challenges associated with the use of PGMs for food safety analysis.This review introduces the basic detection principle of a PGM-based sensing strategy,which consists of three key factors:target recognition,signal transduction,and signal output.Representative studies of existing PGM-based sensing strategies combined with various signal amplification technologies(nanomaterial-loaded multienzyme labeling,nucleic acid reaction,DNAzyme catalysis,responsive nanomaterial encapsulation,and others)in the field of food safety detection are reviewed.Future perspectives and potential opportunities and challenges associated with PGMs in the field of food safety are discussed.Despite the need for complex sample preparation and the lack of standardization in the field,using PGMs in combination with signal amplification technology shows promise as a rapid and cost-effective method for food safety hazard analysis.展开更多
Okra (Abelmoschus esculentus L. ) is a novel heahhcare vegetable that has been developed rapidly in recent years in China. It contains abundant bioactive substances with significant heahbeare functions. So far, many...Okra (Abelmoschus esculentus L. ) is a novel heahhcare vegetable that has been developed rapidly in recent years in China. It contains abundant bioactive substances with significant heahbeare functions. So far, many domestic research institutions have carried out researches about the extraction technology of bioactive substances and their heahhcare functions. At present, tender pods and other organs of A. esculentus are mainly used freshly and directly, but rare products have been processed and developed. In this paper, the research progress of bioactive substances and processing ofA. esculentus was summarized, aiming at providing reference for the deep processing and comprehensive utilization of A. escu/entus in the future in China.展开更多
Quantum information is vulnerable to environmental noise and experimental imperfections,hindering the reli-ability of practical quantum information processors.Therefore,quantum error correction(QEC)that can pro-tect q...Quantum information is vulnerable to environmental noise and experimental imperfections,hindering the reli-ability of practical quantum information processors.Therefore,quantum error correction(QEC)that can pro-tect quantum information against noise is vital for universal and scalable quantum computation.Among many different experimental platforms,superconducting quantum circuits and bosonic encodings in superconducting microwave modes are appealing for their unprecedented potential in QEC.During the last few years,bosonic QEC is demonstrated to reach the break-even point,i.e.the lifetime of a logical qubit is enhanced to exceed that of any individual components composing the experimental system.Beyond that,universal gate sets and fault-tolerant operations on the bosonic codes are also realized,pushing quantum information processing towards the QEC era.In this article,we review the recent progress of the bosonic codes,including the Gottesman-Kitaev-Preskill codes,cat codes,and binomial codes,and discuss the opportunities of bosonic codes in various quantum applications,ranging from fault-tolerant quantum computation to quantum metrology.We also summarize the challenges associated with the bosonic codes and provide an outlook for the potential research directions in the long terms.展开更多
基金supported by the Natural Science Foundation of Shandong Province(Grant No.:ZR2020QC250)China Agriculture Research System(Grant No.:CARS-38)+1 种基金Modern Agricultural Technology Industry System of Shandong Province(Grant No.:SDAIT10-10)Key Technology Research and Development Program of Shandong(Grant Nos.:2021CXGC010809 and 2021TZXD012).
文摘Ensuring food safety is paramount worldwide.Developing effective detection methods to ensure food safety can be challenging owing to trace hazards,long detection time,and resource-poor sites,in addition to the matrix effects of food.Personal glucose meter(PGM),a classic point-of-care testing device,possesses unique application advantages,demonstrating promise in food safety.Currently,many studies have used PGM-based biosensors and signal amplification technologies to achieve sensitive and specific detection of food hazards.Signal amplification technologies have the potential to greatly improve the analytical performance and integration of PGMs with biosensors,which is crucial for solving the challenges associated with the use of PGMs for food safety analysis.This review introduces the basic detection principle of a PGM-based sensing strategy,which consists of three key factors:target recognition,signal transduction,and signal output.Representative studies of existing PGM-based sensing strategies combined with various signal amplification technologies(nanomaterial-loaded multienzyme labeling,nucleic acid reaction,DNAzyme catalysis,responsive nanomaterial encapsulation,and others)in the field of food safety detection are reviewed.Future perspectives and potential opportunities and challenges associated with PGMs in the field of food safety are discussed.Despite the need for complex sample preparation and the lack of standardization in the field,using PGMs in combination with signal amplification technology shows promise as a rapid and cost-effective method for food safety hazard analysis.
基金Supported by Youth Scientific Research Fund of Shandong Academy of Agricultural Sciences(2014QNM55)
文摘Okra (Abelmoschus esculentus L. ) is a novel heahhcare vegetable that has been developed rapidly in recent years in China. It contains abundant bioactive substances with significant heahbeare functions. So far, many domestic research institutions have carried out researches about the extraction technology of bioactive substances and their heahhcare functions. At present, tender pods and other organs of A. esculentus are mainly used freshly and directly, but rare products have been processed and developed. In this paper, the research progress of bioactive substances and processing ofA. esculentus was summarized, aiming at providing reference for the deep processing and comprehensive utilization of A. escu/entus in the future in China.
基金This work was supported by National Key Research and Development Program of China(Grant No.2017YFA0304303)the National Natu-ral Science Foundation of China(Grant No.11925404 and 11874235,11874342 and 11922411)+1 种基金Anhui Initiative in Quantum Information Technologies(AHY130200)a grant from the Institute for Guo Qiang(No.2019GQG1024),Tsinghua University.
文摘Quantum information is vulnerable to environmental noise and experimental imperfections,hindering the reli-ability of practical quantum information processors.Therefore,quantum error correction(QEC)that can pro-tect quantum information against noise is vital for universal and scalable quantum computation.Among many different experimental platforms,superconducting quantum circuits and bosonic encodings in superconducting microwave modes are appealing for their unprecedented potential in QEC.During the last few years,bosonic QEC is demonstrated to reach the break-even point,i.e.the lifetime of a logical qubit is enhanced to exceed that of any individual components composing the experimental system.Beyond that,universal gate sets and fault-tolerant operations on the bosonic codes are also realized,pushing quantum information processing towards the QEC era.In this article,we review the recent progress of the bosonic codes,including the Gottesman-Kitaev-Preskill codes,cat codes,and binomial codes,and discuss the opportunities of bosonic codes in various quantum applications,ranging from fault-tolerant quantum computation to quantum metrology.We also summarize the challenges associated with the bosonic codes and provide an outlook for the potential research directions in the long terms.