To obtain more stable spectral data for accurate quantitative analysis of multi-element,especially for the large-area in-situ elements detection of soils, we propose a method for a multielement quantitative analysis o...To obtain more stable spectral data for accurate quantitative analysis of multi-element,especially for the large-area in-situ elements detection of soils, we propose a method for a multielement quantitative analysis of soils using calibration-free laser-induced breakdown spectroscopy(CF-LIBS) based on data filtering. In this study, we analyze a standard soil sample doped with two heavy metal elements, Cu and Cd, with a specific focus on the line of Cu I324.75 nm for filtering the experimental data of multiple sample sets. Pre-and post-data filtering,the relative standard deviation for Cu decreased from 30% to 10%, The limits of detection(LOD)values for Cu and Cd decreased by 5% and 4%, respectively. Through CF-LIBS, a quantitative analysis was conducted to determine the relative content of elements in soils. Using Cu as a reference, the concentration of Cd was accurately calculated. The results show that post-data filtering, the average relative error of the Cd decreases from 11% to 5%, indicating the effectiveness of data filtering in improving the accuracy of quantitative analysis. Moreover, the content of Si, Fe and other elements can be accurately calculated using this method. To further correct the calculation, the results for Cd was used to provide a more precise calculation. This approach is of great importance for the large-area in-situ heavy metals and trace elements detection in soil, as well as for rapid and accurate quantitative analysis.展开更多
This study proposes a batch rapid quantitative analysis method for multiple elements by combining the advantages of standard curve(SC)and calibration-free laser-induced breakdown spectroscopy(CF-LIBS)technology to ach...This study proposes a batch rapid quantitative analysis method for multiple elements by combining the advantages of standard curve(SC)and calibration-free laser-induced breakdown spectroscopy(CF-LIBS)technology to achieve synchronous,rapid,and accurate measurement of elements in a large number of samples,namely,SC-assisted CF-LIBS.Al alloy standard samples,divided into calibration and test samples,were applied to validate the proposed method.SC was built based on the characteristic line of Pb and Cr in the calibration sample,and the contents of Pb and Cr in the test sample were calculated with relative errors of 6%and 4%,respectively.SC built using Cr with multiple characteristic lines yielded better calculation results.The relative contents of ten elements in the test sample were calculated using CF-LIBS.Subsequently,the SC-assisted CF-LIBS was executed,with the majority of the calculation relative errors falling within the range of 2%-5%.Finally,the Al and Na contents of the Al alloy were predicted.The results demonstrate that it effectively enables the rapid and accurate quantitative analysis of multiple elements after a single-element SC analysis of the tested samples.Furthermore,this quantitative analysis method was successfully applied to soil and Astragalus samples,realizing an accurate calculation of the contents of multiple elements.Thus,it is important to advance the LIBS quantitative analysis and its related applications.展开更多
Ferroptosis and neuroinflammation contribute to the development of Alzheimer's disease(AD). Isoforsythiaside(IFY)is a phenylethanoid glycoside isolated from the dried fruit of Forsythia suspensa(Thunb.)Vahl that h...Ferroptosis and neuroinflammation contribute to the development of Alzheimer's disease(AD). Isoforsythiaside(IFY)is a phenylethanoid glycoside isolated from the dried fruit of Forsythia suspensa(Thunb.)Vahl that has been confirmed to improve the memory and cognitive abilities of APP/PS1 mice in our previous study. The purpose of this study was to explore the anti-ferroptosis and anti-neuroinflammatory properties of IFY-mediated neuroprotection. In APP/PS1 mice, erastin-damaged HT22 cells, and LPS-exposed BV2 cells, the neuroprotective effects against ferroptosis and neuroinflammation were investigated using immunohistochemistry, label-free proteomics, western blot, ELISA, MTT, fluorescence, and TEM. IFY alleviated the expression levels of NO, IL-6, and IL-1β in LPS-exposed BV2 cells and improved the morphology of mitochondria in erastin-damaged HT22 cells. Additionally, IFY upregulated the expression levels of GPX4, FTH, FTL, p-GSK-3β, Nrf2, and NQO1, and downregulated the expression of TFR1, DMT1, p-Fyn, GFAP, p-IKKα+β, p-IκBα, p-NF-κB, and pro-inflammatory factors in the brains of APP/PS1 mice and erastin-damaged HT22 cells. In conclusion, IFY inhibits ferroptosis and neuroinflammation in erastin-damaged HT22 cells and APP/PS1 mice, at least partially by regulating the activation of Nrf2 and NF-κB signaling. IFY may prevent ferroptosis and neuroinflammation in AD and provide a new treatment strategy for AD.展开更多
Astragalus is an important traditional Chinese herb that has therapeutic potential in the treatment of diseases. In this study, the dissolution of metallic elements during the material decoction process was investigat...Astragalus is an important traditional Chinese herb that has therapeutic potential in the treatment of diseases. In this study, the dissolution of metallic elements during the material decoction process was investigated using laser-induced breakdown spectroscopy(LIBS). The Ca, Mg, Al, and Fe in the drug residues, liquid, and vapor were selected for the study of the transfer of elements after different decocting times. It was found that the intensities of the spectral lines for these elements in the drug liquid increased with increasing decocting times.The contrast trend was observed in the residues and only calcium was detected in the vapor.Furthermore, the relative mass concentrations of Ca, Mg, Al, and Fe in the liquid were quantitatively determined by a combination of the standard addition method and calibrationfree-LIBS method by adding the standard concentration solution of Cu and Cd elements into the drug liquids, it can be found that the maximum error between Cd concentration calculated by internal CF-LIBS and the standard is within 10%. This provides a new method of achieving the on-line monitoring and analysis of metallic elements in the production of traditional Chinese medicines.展开更多
Although Zn metal is an ideal anode candidate for aqueous batteries owing to its high theoretical capacity,lower cost,and safety,its service life and efficiency are damaged by severe hydrogen evolution reaction,self-c...Although Zn metal is an ideal anode candidate for aqueous batteries owing to its high theoretical capacity,lower cost,and safety,its service life and efficiency are damaged by severe hydrogen evolution reaction,self-corrosion,and dendrite growth.Herein,a thickness-controlled ZnS passivation layer was fabricated on the Zn metal surface to obtain Zn@ZnS electrode through oxidation–orientation sulfuration by the liquid-and vapor-phase hydrothermal processes.Benefiting from the chemical inertness of the ZnS interphase,the as-prepared Zn@ZnS electrode presents an excellent anti-corrosion and undesirable hydrogen evolution reaction.Meanwhile,the thickness-optimized ZnS layer with an unbalanced charge distribution represses dendrite growth by guiding Zn plating/stripping,leading to long service life.Consequently,the Zn@Zn S presented 300 cycles in the symmetric cells with a 42 mV overpotential,200 cycles in half cells with a 78 mV overpotential,and superb rate performance in Zn||NH;V;O;full cells.展开更多
Laser-induced breakdown spectroscopy-assisted glow discharge(LIBS-GD)for analysis of elements in liquid was proposed,and it was applied to detect heavy metals in highly sensitive mixed solutions of Cu and Cr.During th...Laser-induced breakdown spectroscopy-assisted glow discharge(LIBS-GD)for analysis of elements in liquid was proposed,and it was applied to detect heavy metals in highly sensitive mixed solutions of Cu and Cr.During the experiments of GD and LIBS-GD,the experimental parameters have been optimized and the optimal voltage is 450 V,laser energy is 60 mJ,and the delay time is 4000 ns.Furthermore,the calibration curves of Cu and Cr under GD and LIBS-GD experiments have been established,and the limits of detection(LODs)of Cu and Cr were obtained with the method of GD and LIBS-GD,respectively.The LOD of Cu decreased from3.37(GD)to 0.16 mg l(LIBS-GD),and Cr decreased from 3.15 to 0.34 mg l.The results prove that the capability of elemental detection under LIBS-GD has improved compared with the GD method.Therefore,LIBS-GD is expected to be developed into a highly sensitive method for sewage detection.展开更多
A state diagnosis of laser-produced plasma in air generated by a 1064 nm pulse laser was investigated by the Thomson scattering(TS)method.The evolutions of the electron temperature and electron density were obtained a...A state diagnosis of laser-produced plasma in air generated by a 1064 nm pulse laser was investigated by the Thomson scattering(TS)method.The evolutions of the electron temperature and electron density were obtained as a function of the time delay which ranged from 300-3200 ns.The heating effect produced by the 532 nm probe beam with different energies on the air plasma at different interaction times was further studied using a time-resolved optical emission spectroscopy technique.The influence of the probe beam on the electron density was found to be negligible,whereas its influence on electron temperature is evident.In addition,the heating effect of the probe beam on the plasma strongly depends on the energy of the probe beam,and gradually weakens with increasing time delay.Our results are helpful for further understanding the TS method and its application in plasma diagnostics.展开更多
Alkaline electrolyzers for water splitting under the industrial current densities are always burdened with huge energy consumption due to the high overpotential and poor stability of the anode nanocatalysts for oxygen...Alkaline electrolyzers for water splitting under the industrial current densities are always burdened with huge energy consumption due to the high overpotential and poor stability of the anode nanocatalysts for oxygen evolution reaction(OER).Inspired by the interfacial charge transfer for enhancing the performance,a series of in-situ grown interfacial Mn-NiFe lactate dehydrogenase(LDH)was designed on the Fe_(0.64)Ni_(0.36)/NM(nickel mesh)alloy layer.The optimized Mn_(0.15)-NiFe LDH/Fe_(0.64)Ni_(0.36)/NM exhibited an ultralow overpotential of 295 mV to drive 500 mA·cm^(-2)and an incredible stability under large current density.The interfacial space and heteroatom doping synergistically triggered the electronic structure optimization to promote electron transfer and ensure the durability of the high-current reaction.Notably,the designed Mn_(0.15)-NiFe LDH/Fe_(0.64)Ni_(0.36)/NM as an anode in an integral alkaline electrolyzer exhibited a cell voltage of 1.78 V at 500 mA·cm^(-2) with a stability of 366 h.Density functional theory(DFT)calculations further demonstrated the synergistic effect of alloy layer introduction and Mn doping could accelerate electron transfer and stabilize the charged active center to activate the NiFe LDH and reduce the OER energy barrier.Our work offers new insights into developing efficient self-supported catalysts for high-current alkaline water oxidation.展开更多
A series of spiro-oxadiazoles were synthesized from 1,4:3,6-dianhydro-D-fructose and hydrazides via a stereoselective two-step reaction sequence. The structures of newly synthesized compounds were established by spec...A series of spiro-oxadiazoles were synthesized from 1,4:3,6-dianhydro-D-fructose and hydrazides via a stereoselective two-step reaction sequence. The structures of newly synthesized compounds were established by spectral analysis. The absolute configuration of compound 2a was further confirmed by single crystal X-ray analysis. All the synthesized compounds were screened for their in vitro antitumor activity, showing that these compounds have poor inhibitory activities against A549, MGC-803 tumor cells.展开更多
基金supported by the Major Science and Technology Project of Gansu Province(No.22ZD6FA021-5)the Industrial Support Project of Gansu Province(Nos.2023CYZC-19 and 2021CYZC-22)the Science and Technology Project of Gansu Province(Nos.23YFFA0074,22JR5RA137 and 22JR5RA151).
文摘To obtain more stable spectral data for accurate quantitative analysis of multi-element,especially for the large-area in-situ elements detection of soils, we propose a method for a multielement quantitative analysis of soils using calibration-free laser-induced breakdown spectroscopy(CF-LIBS) based on data filtering. In this study, we analyze a standard soil sample doped with two heavy metal elements, Cu and Cd, with a specific focus on the line of Cu I324.75 nm for filtering the experimental data of multiple sample sets. Pre-and post-data filtering,the relative standard deviation for Cu decreased from 30% to 10%, The limits of detection(LOD)values for Cu and Cd decreased by 5% and 4%, respectively. Through CF-LIBS, a quantitative analysis was conducted to determine the relative content of elements in soils. Using Cu as a reference, the concentration of Cd was accurately calculated. The results show that post-data filtering, the average relative error of the Cd decreases from 11% to 5%, indicating the effectiveness of data filtering in improving the accuracy of quantitative analysis. Moreover, the content of Si, Fe and other elements can be accurately calculated using this method. To further correct the calculation, the results for Cd was used to provide a more precise calculation. This approach is of great importance for the large-area in-situ heavy metals and trace elements detection in soil, as well as for rapid and accurate quantitative analysis.
基金supported by the Major Science and TechnologyTechnol-ogy Projects in Gansu Province(No.22ZD6FA021-5)Industrial Support Project of Gansu Province(Nos.2023CYZC-19 and 2021CYZC-22)+1 种基金Science and Technol-ogy Project of Gansu Province(Nos.23YFFA0074,22JR5RA137,and 22JR5RA151)Central Leading Local Science and Technology Development Fund Projects(No.23ZYQA293).
文摘This study proposes a batch rapid quantitative analysis method for multiple elements by combining the advantages of standard curve(SC)and calibration-free laser-induced breakdown spectroscopy(CF-LIBS)technology to achieve synchronous,rapid,and accurate measurement of elements in a large number of samples,namely,SC-assisted CF-LIBS.Al alloy standard samples,divided into calibration and test samples,were applied to validate the proposed method.SC was built based on the characteristic line of Pb and Cr in the calibration sample,and the contents of Pb and Cr in the test sample were calculated with relative errors of 6%and 4%,respectively.SC built using Cr with multiple characteristic lines yielded better calculation results.The relative contents of ten elements in the test sample were calculated using CF-LIBS.Subsequently,the SC-assisted CF-LIBS was executed,with the majority of the calculation relative errors falling within the range of 2%-5%.Finally,the Al and Na contents of the Al alloy were predicted.The results demonstrate that it effectively enables the rapid and accurate quantitative analysis of multiple elements after a single-element SC analysis of the tested samples.Furthermore,this quantitative analysis method was successfully applied to soil and Astragalus samples,realizing an accurate calculation of the contents of multiple elements.Thus,it is important to advance the LIBS quantitative analysis and its related applications.
基金supported by the Jilin Scientific and Technological Development Program (20191102027YY,20200708037YY and 20200708068YY)the Special Project for Health of Jilin Province (2020SCZT077)+1 种基金Science and Technology Research Project,Education Department of Jilin Province of China (JJKH20200322KJ)Innovation Capacity Building Project of Jilin Provincial Development and Reform Commission (2021C035-6)。
文摘Ferroptosis and neuroinflammation contribute to the development of Alzheimer's disease(AD). Isoforsythiaside(IFY)is a phenylethanoid glycoside isolated from the dried fruit of Forsythia suspensa(Thunb.)Vahl that has been confirmed to improve the memory and cognitive abilities of APP/PS1 mice in our previous study. The purpose of this study was to explore the anti-ferroptosis and anti-neuroinflammatory properties of IFY-mediated neuroprotection. In APP/PS1 mice, erastin-damaged HT22 cells, and LPS-exposed BV2 cells, the neuroprotective effects against ferroptosis and neuroinflammation were investigated using immunohistochemistry, label-free proteomics, western blot, ELISA, MTT, fluorescence, and TEM. IFY alleviated the expression levels of NO, IL-6, and IL-1β in LPS-exposed BV2 cells and improved the morphology of mitochondria in erastin-damaged HT22 cells. Additionally, IFY upregulated the expression levels of GPX4, FTH, FTL, p-GSK-3β, Nrf2, and NQO1, and downregulated the expression of TFR1, DMT1, p-Fyn, GFAP, p-IKKα+β, p-IκBα, p-NF-κB, and pro-inflammatory factors in the brains of APP/PS1 mice and erastin-damaged HT22 cells. In conclusion, IFY inhibits ferroptosis and neuroinflammation in erastin-damaged HT22 cells and APP/PS1 mice, at least partially by regulating the activation of Nrf2 and NF-κB signaling. IFY may prevent ferroptosis and neuroinflammation in AD and provide a new treatment strategy for AD.
基金This work was supported by National Natural Science Foundation of China(Nos.61965015,11564037,61741513,11364037)The Special Fund Project for Guiding Scientific and Technological Innovation of Gansu Province(No.2019zx-10)Young Teachers Scientific Research Ability Promotion Plan of Northwest Normal University(No.NWNU-LKQN2019-1).
文摘Astragalus is an important traditional Chinese herb that has therapeutic potential in the treatment of diseases. In this study, the dissolution of metallic elements during the material decoction process was investigated using laser-induced breakdown spectroscopy(LIBS). The Ca, Mg, Al, and Fe in the drug residues, liquid, and vapor were selected for the study of the transfer of elements after different decocting times. It was found that the intensities of the spectral lines for these elements in the drug liquid increased with increasing decocting times.The contrast trend was observed in the residues and only calcium was detected in the vapor.Furthermore, the relative mass concentrations of Ca, Mg, Al, and Fe in the liquid were quantitatively determined by a combination of the standard addition method and calibrationfree-LIBS method by adding the standard concentration solution of Cu and Cd elements into the drug liquids, it can be found that the maximum error between Cd concentration calculated by internal CF-LIBS and the standard is within 10%. This provides a new method of achieving the on-line monitoring and analysis of metallic elements in the production of traditional Chinese medicines.
基金supported by the National Research Foundation funded by the government of the Republic of Korea (Nos. 2020R1I1A1A01072996 and 2021K 2A9A2A06044652)the National Natural Science Foundation of China (Nos. 52111540265 and 51874272)
文摘Although Zn metal is an ideal anode candidate for aqueous batteries owing to its high theoretical capacity,lower cost,and safety,its service life and efficiency are damaged by severe hydrogen evolution reaction,self-corrosion,and dendrite growth.Herein,a thickness-controlled ZnS passivation layer was fabricated on the Zn metal surface to obtain Zn@ZnS electrode through oxidation–orientation sulfuration by the liquid-and vapor-phase hydrothermal processes.Benefiting from the chemical inertness of the ZnS interphase,the as-prepared Zn@ZnS electrode presents an excellent anti-corrosion and undesirable hydrogen evolution reaction.Meanwhile,the thickness-optimized ZnS layer with an unbalanced charge distribution represses dendrite growth by guiding Zn plating/stripping,leading to long service life.Consequently,the Zn@Zn S presented 300 cycles in the symmetric cells with a 42 mV overpotential,200 cycles in half cells with a 78 mV overpotential,and superb rate performance in Zn||NH;V;O;full cells.
基金supported by National Natural Science Foundation of China(Nos.61965015,11564037,and 161741513)the Industrial Support Program for Colleges of Gansu Province(No.2020C-17)+1 种基金the Science and Technology Project of Gansu Province(No.21JR7RA131)the Young Teachers Scientific Research Ability Promotion Plan of Northwest Normal University(No.NWNU-LKQN2019-1)。
文摘Laser-induced breakdown spectroscopy-assisted glow discharge(LIBS-GD)for analysis of elements in liquid was proposed,and it was applied to detect heavy metals in highly sensitive mixed solutions of Cu and Cr.During the experiments of GD and LIBS-GD,the experimental parameters have been optimized and the optimal voltage is 450 V,laser energy is 60 mJ,and the delay time is 4000 ns.Furthermore,the calibration curves of Cu and Cr under GD and LIBS-GD experiments have been established,and the limits of detection(LODs)of Cu and Cr were obtained with the method of GD and LIBS-GD,respectively.The LOD of Cu decreased from3.37(GD)to 0.16 mg l(LIBS-GD),and Cr decreased from 3.15 to 0.34 mg l.The results prove that the capability of elemental detection under LIBS-GD has improved compared with the GD method.Therefore,LIBS-GD is expected to be developed into a highly sensitive method for sewage detection.
基金This work is supported by the National Key Research and Development Program of China(No.2017YFA0402300)National Natural Science Foundation of China(Nos.11874051,11564037,61741513,11904293)the Special Fund Project for Guiding Scientific and Technological Inno-vation of Gansu Province(No.2019zx-10).
文摘A state diagnosis of laser-produced plasma in air generated by a 1064 nm pulse laser was investigated by the Thomson scattering(TS)method.The evolutions of the electron temperature and electron density were obtained as a function of the time delay which ranged from 300-3200 ns.The heating effect produced by the 532 nm probe beam with different energies on the air plasma at different interaction times was further studied using a time-resolved optical emission spectroscopy technique.The influence of the probe beam on the electron density was found to be negligible,whereas its influence on electron temperature is evident.In addition,the heating effect of the probe beam on the plasma strongly depends on the energy of the probe beam,and gradually weakens with increasing time delay.Our results are helpful for further understanding the TS method and its application in plasma diagnostics.
文摘Alkaline electrolyzers for water splitting under the industrial current densities are always burdened with huge energy consumption due to the high overpotential and poor stability of the anode nanocatalysts for oxygen evolution reaction(OER).Inspired by the interfacial charge transfer for enhancing the performance,a series of in-situ grown interfacial Mn-NiFe lactate dehydrogenase(LDH)was designed on the Fe_(0.64)Ni_(0.36)/NM(nickel mesh)alloy layer.The optimized Mn_(0.15)-NiFe LDH/Fe_(0.64)Ni_(0.36)/NM exhibited an ultralow overpotential of 295 mV to drive 500 mA·cm^(-2)and an incredible stability under large current density.The interfacial space and heteroatom doping synergistically triggered the electronic structure optimization to promote electron transfer and ensure the durability of the high-current reaction.Notably,the designed Mn_(0.15)-NiFe LDH/Fe_(0.64)Ni_(0.36)/NM as an anode in an integral alkaline electrolyzer exhibited a cell voltage of 1.78 V at 500 mA·cm^(-2) with a stability of 366 h.Density functional theory(DFT)calculations further demonstrated the synergistic effect of alloy layer introduction and Mn doping could accelerate electron transfer and stabilize the charged active center to activate the NiFe LDH and reduce the OER energy barrier.Our work offers new insights into developing efficient self-supported catalysts for high-current alkaline water oxidation.
基金We gratefully acknowledge financial support from the National Natural Science Foundation of China (No. 21372207).
文摘A series of spiro-oxadiazoles were synthesized from 1,4:3,6-dianhydro-D-fructose and hydrazides via a stereoselective two-step reaction sequence. The structures of newly synthesized compounds were established by spectral analysis. The absolute configuration of compound 2a was further confirmed by single crystal X-ray analysis. All the synthesized compounds were screened for their in vitro antitumor activity, showing that these compounds have poor inhibitory activities against A549, MGC-803 tumor cells.