Artificial light-harvesting systems(LHSs) have drawn increasing research interest in recent times due to the energy crisis worldwide. Concurrently, macrocycle-based host–guest interactions have played an important ro...Artificial light-harvesting systems(LHSs) have drawn increasing research interest in recent times due to the energy crisis worldwide. Concurrently, macrocycle-based host–guest interactions have played an important role in the development of supramolecular chemistry. In recent years, studies towards artificial LHSs driven by macrocycle-based host–guest interactions are gradually being disclosed. In this mini-review, we briefly introduce the burgeoning progress of artificial LHSs driven by host–guest interactions. We believe that an increasing number of reports of artificial LHSs driven by host–guest interactions will appear in the near future and will provide a viable alternative for the future production of renewable energy.展开更多
Pillar[n]arenes are a new kind of supramolecular macrocyclic hosts which have developed rapidly due to their unique topology and high functionality, giving rise to many applications in the construction of interesting ...Pillar[n]arenes are a new kind of supramolecular macrocyclic hosts which have developed rapidly due to their unique topology and high functionality, giving rise to many applications in the construction of interesting and functional materials. Among them, water-soluble pillar[n]arenes bearing triethylene oxide (TEO) chains have drawn increasing research interest due to their advantageous properties. In this review, we summarized the recent progress of dynamic materials fabricated from water soluble pillar[n]arenes bearing TEO groups, including thermo responsive materials with lower critical solution temperature (LCST) behavior, cyclic host liquids, and smart windows. It is anticipated that more and more ‘smart' supramolecular materials based on modified pillar[n]arenes will be developed in this burgeoning area of research.展开更多
基金financial support of the National Natural Science Foundation of China (No. 21702020)
文摘Artificial light-harvesting systems(LHSs) have drawn increasing research interest in recent times due to the energy crisis worldwide. Concurrently, macrocycle-based host–guest interactions have played an important role in the development of supramolecular chemistry. In recent years, studies towards artificial LHSs driven by macrocycle-based host–guest interactions are gradually being disclosed. In this mini-review, we briefly introduce the burgeoning progress of artificial LHSs driven by host–guest interactions. We believe that an increasing number of reports of artificial LHSs driven by host–guest interactions will appear in the near future and will provide a viable alternative for the future production of renewable energy.
基金financial support from the National Natural Science Foundation of China(No. 21702020)and Maynooth University
文摘Pillar[n]arenes are a new kind of supramolecular macrocyclic hosts which have developed rapidly due to their unique topology and high functionality, giving rise to many applications in the construction of interesting and functional materials. Among them, water-soluble pillar[n]arenes bearing triethylene oxide (TEO) chains have drawn increasing research interest due to their advantageous properties. In this review, we summarized the recent progress of dynamic materials fabricated from water soluble pillar[n]arenes bearing TEO groups, including thermo responsive materials with lower critical solution temperature (LCST) behavior, cyclic host liquids, and smart windows. It is anticipated that more and more ‘smart' supramolecular materials based on modified pillar[n]arenes will be developed in this burgeoning area of research.