期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Does Particulate Organic Matter Fraction Meet the Criteria for a Model Soil Organic Matter Pool? 被引量:1
1
作者 Denis CURTIN Michael H.BEARE +1 位作者 weiwen qiu Joanna SHARP 《Pedosphere》 SCIE CAS CSCD 2019年第2期195-203,共9页
There is a well-recognized need for improved fractionation methods to partition soil organic matter into functional pools. Physical separation based on particle size is widely used, yielding particulate organic matter... There is a well-recognized need for improved fractionation methods to partition soil organic matter into functional pools. Physical separation based on particle size is widely used, yielding particulate organic matter(POM, i.e., free or "uncomplexed" organic matter> 50 μm) as the most labile fraction. To evaluate whether POM meets criteria for an ideal model pool, we examined whether it is:1) unique, i.e., found only in the > 50 μm fraction and 2) homogeneous, rather than a composite of different subfractions. Following ultrasonic dispersion, sand(> 50 μm) along with coarse(20–50 μm) and fine(5–20 μm) silt fractions were isolated from a silt loam soil under long-term pasture at Lincoln, New Zealand. The sand and silt fractions contained 20% and 21% of total soil C, respectively.We adopted a sequential density separation procedure using sodium polytungstate with density increasing step-wise from 1.7 to 2.4 g cm^(-3) to recover organic matter(light fractions) from the sand and silt fractions. Almost all(ca. 90%) the organic matter in the sand fraction and a large proportion(ca. 60%–70%) in the silt fractions was recovered by sequential density separation. The results suggested that POM is a composite of organo-mineral complexes with varying proportions of organic and mineral materials. Part of the organic matter associated with the silt fractions shared features in common with POM. In a laboratory bio-assay, biodegradability of POM varied depending on land use(pasture > arable cropping). We concluded that POM is neither homogeneous nor unique. 展开更多
关键词 BIODEGRADABILITY density separation labile FRACTION land use particle size FRACTIONATION sand SILT sodium polytungstate
原文传递
Soil particle size range correction for improved calibration relationship between the laser-diffraction method and sieve-pipette method 被引量:1
2
作者 weiwen qiu Wei HU +1 位作者 Denis CURTIN Lidia MOTOI 《Pedosphere》 SCIE CAS CSCD 2021年第1期134-144,共11页
Particle size fraction(clay, silt, and sand) is an important characteristic that influences several soil functions. The laser-diffraction method(LDM) provides a fast and cost-effective measurement of particle size dis... Particle size fraction(clay, silt, and sand) is an important characteristic that influences several soil functions. The laser-diffraction method(LDM) provides a fast and cost-effective measurement of particle size distribution, but the results usually differ from those obtained by the traditional sieve-pipette method(SPM). This difference can persist even when calibration is applied between the two methods. This partly relates to the different size ranges of particles measured by the two methods as a result of different operational principles, i.e., particle sedimentation according to Stokes’ Law vs. Mie theory for laser beam scattering. The objective of this study was to identify particle size ranges of LDM equivalent to those measured by SPM and evaluate whether new calibration models based on size range correction can be used to improve LDM-estimated particle size fractions, using 51 soil samples with various texture collected from five soil orders in New Zealand. Particle size distribution was determined using both LDM and SPM. Compared with SPM, original data from LDM underestimated the clay fraction(< 2 μm), overestimated the silt fraction(2–53 μm), but provided a good estimation of the sand fraction(53–2 000 μm).Results from three statistical indices, including Pearson’s correlation coefficient, slope, and Lin’s concordance correlation coefficient, showed that the size ranges of < 2 and 2–53 μm defined by SPM corresponded with the < 5 and 5–53 μm size ranges by LDM, respectively. Compared with the traditional calibration(based on the same particle size ranges), new calibration models(based on the corrected size ranges of these two methods) improved the estimation of clay and silt contents by LDM. Compared with soil-specific models(i.e., different models were developed for different soils), a universal model may be more parsimonious for estimating particle size fractions if the samples to be assessed represent multiple soil orders. 展开更多
关键词 laser diffraction Lin’s concordance correlation coefficient particle size distribution Pearson’s correlation coefficient sedimentation method soil separate soil texture
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部